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Abstract

This paper implements and compares four alternative techniques for the solution of het-
erogeneous agents business cycle models within the lumpy capital adjustment framework. The
widespread Krusell Smith algorithm consistently delivers high accuracy and economic impli-
cations quantitatively similar to other bounded rationality, projection-based approaches, but it
does so at the cost of high computational intensity. The Parametrized Distributions and Explicit
Aggregation methods yield important speed gains but reduced accuracy. The conceptually dis-
tinct Projection plus Perturbation method implies qualitatively similar economic results, even
more dramatic reductions in computational cost, as well as an important scalability of the ag-
gregate state space. A code package implementing each solution method is available online.
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1 Introduction

Heterogeneous agent business cycle models o�er the attractive possibility of combining a fully


edged business cycle structure with rich, testable implications for the cross-section of consumer or

�rm behavior. However, such frameworks, with seminal examples given by the incomplete markets

model of Krusell and Smith (1998) and the heterogeneous �rms model of Khan and Thomas (2008),

pose several practical challenges for researchers. First, their solution and simulation are computa-

tionally intensive. Second, the traditional solution techniques used for these models, such as the

Krusell Smith (KS) algorithm, rely on bounded rationality and aggregation assumptions and must

be evaluated ex-post for the internal consistency of these assumptions. To help guide researchers

around these issues in the practical solution of the incomplete markets model, many papers provide

alternative solution techniques and computational strategies.1 These advances pro�tably improve

the speed and accuracy of solutions of the incomplete markets model, but the literature lacks a

comprehensive analysis of their applicability to the heterogeneous �rms context, which encompasses

a fundamentally di�erent economic and computational environment.2

This paper seeks to provide such a comparison of solution techniques speci�cally targeted to-

wards the solution of the heterogeneous �rms model. The Khan and Thomas (2008) model is a

natural framework on which to base such a comparison because of the large number of papers using

a similar underlying structure.3 The heterogeneous �rms framework here combines aggregate un-

certainty in the form of aggregate productivity shocks together with lumpy capital adjustment costs

and a rich cross-sectional distribution of idiosyncratic productivity shocks and capital holdings. I

adapt four existing algorithms to the heterogeneous �rms structure, implementing each solution

technique and comparing them along multiple dimensions: their simulated business cycle moments,

cross-sectional investment rate distributions, impulse response functions, internal accuracy, as well

as the computational burden posed by each algorithm. I implement the following four algorithms:

1.


4. and the Projection plus Perturbation (REITER) solution technique of Reiter (2009).

A quick word about the choice of these four techniques for comparison is in order. The KS

approach is a natural and important choice because of its wide use in the heterogeneous �rms

literature to date. The PARAM algorithm is attractive both because it has been studied com-

prehensively in the context of the incomplete markets model but also because it bears conceptual

similarity to another approach, the Backward Induction algorithm of Reiter (2010c). The XPA

approach has been studied previously as a solution method for the heterogeneous �rms model in

Sunakawa (2012), and for comparability I rely on that paper's adaptation of the original Den Haan

and Rendahl (2010) technique.4 Finally, the REITER approach is an important addition to the

algorithms considered here because it is conceptually distinct. The REITER method relies upon a

linear perturbation approach in aggregates together with a rich, discretized projection problem at

the microeconomic level to solve an approximation to the rational expectations equilibrium. For

each solution method, code is readily available online.5

Three main conclusions can be drawn from the comparisons in this paper. First, the KS

algorithm compares very favorably with the other solution techniques considered here. The KS

routine o�ers a high degree of internal accuracy and delivers economic implications well in line

https://sites.google.com/site/stephenjamesterry/


tion approximation to the full rational expectations equilibrium. 6 The resulting solution to the

heterogeneous �rms model delivers qualitatively similar economic results as the traditional KS al-

gorithm, although the aggregate dynamics do systematically di�er in some ways discussed in more

detail below. In practical terms, the use of perturbation methods delivers speed gains far above

those achieved by either the PARAM or XPA algorithms. Perhaps more signi�cantly, however,

the REITER approach o�ers scalability of the macroeconomic complexity of heterogeneous agents

models by providing a means for inclusion of a richer aggregate state space than would be currently

tractable using a projection-based approach subject to the curse of dimensionality.

Section 2 lays out the model and calibration, a direct simpli�cation of Khan and Thomas



dividends weighted by a marginal utility price p. Second, household labor supply optimality and

linear disutility of labor imply a trivial relationship between the wage and price p:

p =
1

C(A; � )
; w(A; � ) =

�
p(A; � )

:

Above, prices and wages are written in terms of an aggregate state (A; � ) including aggregate

productivity A and a cross-sectional distribution� of capital and productivity, both of which are

discussed in more detail below.

2.2 Firms

In each period there is a distribution of �rms � (z; k) over idiosyncratic productivity and capital

levels z and k.



where the value upon adjustmentV A is given by optimization over investment and labor

V A (z; k; A; � ) = max
k0;n

�
p(A; � )

�
zAk � n� � k0+ (1 � � )k � w(A; � )n

�
+ � E� � ;z0;A 0V(z0; k0; A0; � 0)

	
:

If a �rm chooses not to adjust its capital stock, then it must face a dynamic return V NA which

involves optimization of only the labor input n holding capital levels �xed at the (depreciated) level

from last period:

V NA (z; k; A; � ) = max
n

�
p(A; � ) (zAk � n� � w(A; � )n) + � E� � ;z0;A 0V(z0; (1 � � )k; A0; � 0)

	
:

The trivial nature of the discrete choice problem leads to a cuto� rule for capital investment, such

that �rms adjust their capital stock if and only if the adjustment cost draw � is less than a cuto�

level

� � (z; k; A; � ) =
V A (z; k; A; � ) � V NA (z; k; A; � )

�
;

where the numerator re
ects the gains from capital adjustment relative to inaction and the denom-

inator's adjustment by labor disutility � is required to convert from marginal-utility to labor units.

Further the distribution of lumpy capital adjustment costs is assumed to be given byG(� ) = U(0; �� ),

where �� > 0 indexes the level of the adjustment friction in the economy.

2.3 Equilibrium

An equilibrium represents a set of �rm value functions ~V ; V; VA ; V NA , �rm policies and adjustment

thresholds k0; n; � � , prices p(A; � ); w(A; � ), and mappings � � ; � p such that

� Firm capital adjustment choices and policies conditional upon adjustment satisfy the Bellman

equations de�ning V; VA ; V NA above, and therefore �rm capital transitions are given by

k0(z; k; � ; A; � ) =
�

k0(z; k; A; � ); � < � �



� Aggregate consumption satis�es the resource constraint

C(A; � ) = Y (A; � ) � I (A; � ):

� The households are on their optimality schedules for savings and labor supply decisions, i.e.

the �rst order conditions de�ning marginal utility and wages hold, and the price mapping is

consistent

p(A; � ) = � p(A; � ) =
1

C(A; � )
; w(A; � ) =

�
p(A; � )

:

� Aggregate productivity follows the assumed AR(1) process in logs.

2.4 Calibration

The parameter choices used in the solution method comparison below are those chosen by Khan and

Thomas (2008). The parameter choices re
ect an annual frequency and positive levels of capital

adjustment costs at the �rm level, as summarized in Table 1. Given that this paper is concerned

withthav70.90911,46(c604 0 Td [())]TJ/F49 10.9091 Tf 5.438 7.483 Td [(;)-1167(w)]TJ/F8 10.909(elo)28(w)-2u008eJ/F8 10.g1)]TJ/F4910.9091



discussed above is replaced by (z; k; A; m), and the transition and price mappings are replaced by

forecast rulesm̂0 = �̂ m and p̂ = �̂ p. In practice, the forecast rules are assumed to take a loglinear

form conditional upon aggregate productivity, although the algorithm allows for more 
exibility in

theory.

Solution of the model involves repeated simulation to obtain a �xed point on the forecast

mappings for �rms. First, a particular set forecast rules is assumed, allowing for the creation of

value functions for the idiosyncratic �rm problems using the simpli�ed state space (z; k; A; m).

Then, given the idiosyncratic �rm value functions, the model is simulated. Throughout this paper

unless otherwise noted, aggregate and productivity shocks in the KS method, as well as the PARAM

and XPA techniques, are discretized using the Markov chain approximation process of Tauchen

(1986). Also, unless otherwise noted, simulation of the cross-sectional distribution of productivity

and idiosyncratic capital makes use of the nonstochastic or histogram-based approach in Young

(2010) rather than relying on simulation of individual �rms. This histogram-based simulation

technique avoids the sampling error associated with individual �rm simulation and in practice is

less computationally burdensome. In each period, market-clearing consumption must be found



Given a guess for the �rm value function which can be used in construction of the continuation

value in the �rm Bellman equations, optimization and calculation of the next iteration of the

value function requires calculation of two objects: market-clearing pricep(A; m) for construction of

current-period returns, and next-period momentsm0 for input into continuation values. Both p and

m0 can be computed within the value function iteration step quite naturally by using �xed point

iteration. After guessing values for (p; m0), �rm policies are computable, and implied aggregates

can be obtained by integrating over the cross-sectional distribution of �rm-level productivity and

capital (z; k). Such integration is the key step within the PARAM algorithm and is performed

numerically using 
exible exponential functional forms for the density of the model which exactly

match the aggregate momentsm together with the higher-order reference moments in the cross-

section. Iteration on prices and next-period moments continues until a �xed point is achieved, at

which point the next value function iteration step is taken. Once the value function converges, the

model is solved.

Note that crucially the PARAM approach does not require simulation and therefore leads to

large time savings relative to the KS algorithm's solution. However, if desired, new values for

reference moments can be computed from simulation and updated until an outside �xed point is

achieved, similar to the KS technique. In either case, however, simulation in each period requires

a �xed-point iteration routine over market-clearing prices and next-period moments, similar to the

process within the model solution step and involving integration over parametrized cross-sectional

densities. See Appendix A for further details on the PARAM algorithm, as well as the functional

forms used for the assumed cross-sectional densities.8

3.3 Explicit Aggregation Algorithm

The XPA solution method relies upon the techniques suggested by Den Haan and Rendahl (2010),

as �rst adapted and applied to the heterogeneous �rms model by Sunakawa (2012). The algorithm

is essentially identical to the KS method, also making use of a bounded rationality assumption

replacing the aggregate state space (A; � ) with an approximation based on moments (





must take into account Bellman equations, distributional transitions, and equilibrium conditions.

The third step involves the application of standard techniques for the solution of dynamic linear

rational expectations systems, such as the method of Sims (2002) or Christiano (2002), to the

solution of the heterogeneous �rms model. Through numerical di�erentiation, the system F can

be written as a linear approximation around the steady-state solution of the model, and then the

standard methods for the solution of linear models may be applied. Further discussions of the

details of the REITER solution method can be found in Appendix A.

4 Comparing Solutions

This section compares the four alternative solutions to the heterogeneous �rms model along multiple

dimensions: reported business cycle aggregate series and moments, impulse response functions to

an aggregate productivity shock, microeconomic moments of investment rates, internal accuracy

and diagnostic statistics, and �nally a comparison of computational time. Unless otherwise noted,

comparisons across methods are conducted with comparable levels of computational intensity, i.e.

the projection grid ranges and densities do not vary across methods, similar interpolation and

optimization techniques are used when solving Bellman equations, and of course random exogenous

shocks are held constant during simulation across methods.10 Speci�c details about the numerical

choices made are available in Appendix B. Appendix C contains details on the procedure used to

simulate impulse responses in the nonlinear discretized models.

4.1 Unconditional Simulation: Business Cycle Moments and Micro Investment



Table 2: Unconditional Simulation Di�erences

Method Output Investment Labor Price
Mean % Di�erence from KS

PARAM -0.2760 -0.6892 -0.1144 0.1751
XPA 0.0053 0.2849 0.0079 0.0118

REITER -0.1736 0.0710 -0.1219 0.0527

Note: Mean percentage di�erences between the business cycle simulations for the PARAM, XPA, and REITER
solutions over a 2000-period unconditional simulation, relative to an analogous KS simulation are reported in this
table, with columns representing the average value of 100(log(X method

t ) � log(X KS
t )) for each solution method and

series X t . The exogenous aggregate productivity process re
ects a Markov chain discretized using the Tauchen
(1986) procedure and is held constant across solution methods during the simulation. To achieve this, an identical
simulated discretized productivity process is input directly into the KS, PARAM, and XPA solutions, while a series
of continuous aggregate shocks exactly replicating the discretized productivity process is input into the REITER
solution. For each method, the full 2000 period simulation for each solution method begins after 500 periods, with
an initial burn-in period discarded to avoid the in
uence of initial conditions on the simulated aggregates.

Although the simulated 
uctuations are quite similar across solution methods in Figure 1, a few

patterns are immediately visible to the naked eye. First, mean di�erences between the simulated





rates. A number of cross-sectional moments can be computed for each period of the unconditional

simulation of the model within each solution method, based directly on the Young (2010)-style

simulated histograms for the KS and XPA solutions, the parametrized cross-sectional densities and

coe�cients of the PARAM method, and the endogenous discretized vector of histogram weights

available directly from the REITER simulation. Here, we focus on the moments analyzed by Khan

and Thomas (2008), including the prevalence of inaction, large positive or negative investment

\spikes," and the overall likelihood of positive or negative investment. Table 5 reports the mean

levels of these statistics, together with the �rst and second moments of the investment-rate dis-

tribution. Comfortingly, the methods deliver broadly similar implications for the cross-section of

investment, although the cross-sectional dispersion of investment rates is lower for the REITER

solution.12 Around three-quarters of �rms are inactive in each period, with around one-�fth of �rms

exhibiting both positive investment spikes or positive investment overall. Much smaller proportions

of observations see negative investment spikes or rates.13

Table 5: Microeconomic Investment-Rate Moments

KS PARAM XPA REITER REITER-OWN
Simulated Mean Value

i
k 0.0891 0.0887 0.0903 0.0797 0.0364

�
� i

k

�
0.2224 0.2247 0.2290 0.0939 0.0624

P( i
k = 0)

P
0.0939



4.2 Impulse Response Functions

Now we turn to a comparison of the heterogeneous �rms solutions based on conditional responses,

or impulse response analysis, rather than unconditional simulations. At this point, some concrete

decisions must inevitably be made about the manner in which to simulate the underlying object

of interest, i.e. the average change in the forecast of a given series in response to a shock to

aggregate productivity of a certain size. Two considerations will always face a researcher working

with nonlinear discretized models like those considered here. First, given the nonlinear structure of

the KS, PARAM, and XPA solutions, the average conditional response to a shock will depend both

upon initial conditions and upon the size of the shock. Second, we may wish to consider a shock

scaled to a certain average size, such as the calibrated standard deviation of the underlying true

aggregate productivity process, but a discrete Markov chain only admits discrete innovations in the

aggregate productivity series. Neither challenge is present with a linearized solution such as that

available for the REITER method, since in that case a classical impulse response is computable

directly from the coe�cients de�ning the model solution, and the local linearity guarantees that

for small perturbations the impulse response scales directly with shock size.

Table 6: IRF Simulation Di�erences

Method Output Investment Labor Price
Mean % Di�erence from KS

PARAM



To generate a 
exibly-sized aggregate shock using discretized productivity, we simply convexify

the shock arrival within each simulation pair described above, imposing a shock only with a prob-

ability calculated to generate any desired average change in aggregate productivity. The details of

this additional modi�cation, as well as Figure C1 comparing the virtually identical linearized and

simulated impulse responses for the REITER method are again available in Appendix C.

Figure 3 plots the impulse response to a one-standard deviation (1:4%) average positive ag-

gregate productivity shock for aggregate output, investment, labor, and price. The responses are

qualitatively identical: an increase in aggregate productivity leads immediately to a jump in output,



Table 7: Accuracy Statistics for Forecast Rules

Max DH, K 0 Mean DH, K 0 Max DH p Mean DH p
KS 0.6199 0.1909 0.2155 0.0411

PARAM 2.5986 0.4657 1.6889 0.2851
XPA 3.7564 0.7417 1.5376 0.3008

Note: The table above reports internal accuracy statistics based on unconditional simulations for the three solution
methods with explicit forecast mappings from the approximate aggregate state ( A; K ) to realized next-period capital
K 0 (the �rst two columns) and to market-clearing prices p (the �nal two columns). The �rst two columns report
the maximum and mean Den Haan (2010a) statistic for aggregate capital K 0, i.e. the maximum and mean values,



A �nal note is in order concerning the REITER solution method. Since it is based upon an

approximation to the rational expectations equilibrium of the model, there is no directly compa-

rable notion of forecast accuracy for that solution technique. However, as suggested by Reiter

(2009), we can increase the density of the underlying discretization of the cross-sectional distri-

bution substantially (by one-third in the case considered here), and compare the maximum and

mean simulated di�erence between market-clearing aggregate price series in the baseline REITER

discretization and the higher density approximation. Those statistics, only very roughly analogous

to the price DH statistics reported in Table 7, are 0:1830(0:0466%) for the max (mean) di�erences.

The baseline REITER price simulation, together with the same series generated using the denser

grid, are plotted in Appendix Figure B1.

4.4 Computational Time

A �nal explicit comparison of the solution techniques involves computational time. Although run-

time comparisons inevitably depend upon the e�ciency and choices made when coding the solution

methods, as well as the speci�c language or software used and the details of the numerical approach,

a few considerations help to allay those concerns in this case. The projection-based solution KS,



constant across solution methods. All models are solved using comparable idiosyncratic and aggregate grids, identical
Bellman equation or policy iteration tolerances, and identical forecast rule initial conditions, with the exception of
the REITER method, which is solved using a denser cross-sectional grid. See Appendix B for details.

Within the model solution step, the KS algorithm takes approximately 20 times as long as the

PARAM or XPA techniques, due to the necessity of repeated model simulation to �nd a forecasting

system �xed point. By avoiding simulation, each of those two alternative approaches reduces time

within the model solution step substantially. Although the steady-state solution with no aggregate

uncertainty, an initial input into the REITER method, can be solved within a couple of seconds, the

numerical di�erentiation and solution of the resulting linear system take a bit more time. Overall,

for the numerical choices made here, the REITER solution takes approximately two and a half

times as long as the XPA method.

Simulation speeds fall into two distinct groups. The bounded rationality projection-based KS,

PARAM, and XPA approaches are costly to simulate but take around the same amount of time.

Each approach requires iteration on either the market-clearing price (KS, XPA), or the price, next

period's capital stock, and the approximating coe�cients of a simulated cross-sectional density

(PARAM). Although the PARAM technique takes the most time within this group for simulation,

costs are roughly comparable. By contrast, once a linear representation of the equilibrium is

obtained in the REITER solution step, simulation is virtually costless, about 1000 times faster than

the next-quickest XPA approach for the unconditional simulation. A similar ratio is evident for the

much longer repeated simulations of impulse response analysis: the REITER method dominates

in simulation time by about three orders of magnitude.15 The increased simulation speed, as well

as the availability of linearized impulses responses, opens the door for expansion of the aggregate

state space within the REITER approach, considered next.

5 Extending the Aggregate State Space: A Simple Example

Perhaps the most signi�cant conceptual contribution of the REITER approach is the scalability

it o�ers. By relying on perturbations of the model in aggregates, it is possible to simultaneously



studied the dynamics of a rich state-dependent pricing model using the REITER method.16

As a concrete example within the heterogeneous �rms model, with details deferred to Appendix

D, I illustrate how at essentially no additional computational cost or complexity it is possible to

add two demand or preference shocks, one to the rate of time-preference and one to labor disutility,

within the simpli�ed Khan and Thomas (2008) framework. It is clear that adding two additional

aggregate states is computationally quite burdensome within the bounded rationality projection-

based KS, PARAM, or XPA approaches due to the curse of dimensionality.17 Adding the full

richness of some large representative agent models in terms of shocks and equilibrium interactions

would become even more infeasible. In Figure 5 I plot the linearized impulse response of this

extended model to a positive time-preference or demand shock, somewhat arbitrarily scaled to

equal the magnitude of the aggregate productivity shock at 1:4%. Unsurprisingly, the demand

shock delivers increased consumption but reductions in investment, output, and labor. While such

dynamics leading to a lack of comovement are not necessarily empirically plausible, the REITER

method is obviously capable of generating nontrivially richer aggregate dynamics with essentially

the same computational burden. Impulse responses to the other two aggregate shocks are deferred

to Appendix D.

6 Conclusion

By comparing the KS, PARAM, XPA, and REITER solution methods along the dimension of busi-

ness cycle and micro-level investment moments, conditional impulse responses, internal accuracy,

and runtime, we are able to draw a more complete picture of the tradeo�s among solution tech-

niques available for the heterogeneous �rms model. Overall, the KS algorithm is time consuming

but internally extremely accurate and robust. The related XPA and PARAM algorithms deliver

less internal accuracy, quantitatively similar economic implications to the KS approach, but large

within-solution step speed gains by avoiding the KS algorithm's dependence upon simulation within

the model solution step. Quantitatively and conceptually, these three algorithms based on bounded

rationality, approximation of the aggregate state space, and global projection techniques generally

deliver similar conclusions, and this paper can be interpreted as a favorable robustness check for

the long literature using the KS method in heterogeneous �rms contexts.

By contrast, with a conceptually di�erent rational expectations equilibrium concept, yet still

qualitatively similar economic conclusions, even more dramatic time savings, and an important

scalability, the REITER method o�ers an alternative to the other three methods considered that

can potentially serve as a useful link between the representative agent and heterogeneous agent
16 Note that when the discretization of the cross-sectional distribution is too dense, or the aggregate dynamics too

rich, to handle with standard linear solution techniques, Reiter (2010a) provides an overview of model reduction
techniques which can be used to solve a smaller system of linear equations with dynamics similar to those of the
original, larger system. Such model reduction is implemented by McKay and Reis (2013).

17 Of course, although quite costly, such expanded analysis may still be feasible. See Bloom et al. (2012), Khan
and Thomas (2013), and Bachmann and Ma (2012), among others, for KS method approaches with richer aggregate
state spaces.
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business cycle literatures by allowing for an extremely rich aggregate state space within the context

of a fully speci�ed nonlinear microeconomic set of distributions and policies.

An interesting set of recently proposed solution techniques, omitted from this paper's compari-

son but potentially extremely useful in future as a means of e�ciently solving a global projection-

based approximation to a full rational expectations heterogeneous agents equilibrium are presented

in Gordon (2011) and Judd et al. (2012). In Gordon (2011), the use of sparse Smolyak projec-

tion grids allows for the solution of models with the full cross-sectional distribution within the

state space but still potentially subject to extreme calibrations or shocks. In Judd et al. (2012) a

simulation-based reduction of the size of a projection grid is proposed that naturally might allow

for the incorporation of a full discretized distribution within the aggregate state space of a het-

erogeneous agents model. Possible application of the Gordon (2011) method to the heterogeneous

�rms context and the general application of the Judd et al. (2012) projection grid simpli�cation

technique to heterogeneous agents frameworks like the incomplete markets model are the subject

of ongoing work.
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Figure 2: Unconditional Continuous Simulation of REITER-OWN



Figure 3: Impulse Response, Productivity Shock

Note: Simulated impulse responses to an aggregate productivity shocks for the KS, PARAM, XPA, and REITER series are plotted
above, in percentages. The KS solution is in black, the XPA in red, the PARAM in green, and the REITER in blue. The exogenous
aggregate productivity impulse response is simulated as suggested by Koop et al. (1996) and discussed in more detail in Appendix C.
The simulation consists of 2000 independent simulations of 50-period length, with and without imposed productivity shocks which
occur during a period labelled 1 above. In one simulation, a positive shock to aggregate productivity with mean equal to one-standard
deviation of the aggregate productivity shock process occurs, while in another simulation with otherwise identical exogenous series,
no aggregate productivity innovation occurs. The reported series ^xmethod

t is the mean of 100(log(X shock
t ) � log(X noshock

t )) across
simulations, for each seriesX t and solution method method.
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Figure 4: Den Haan Fundamental Accuracy Plot

Note: The �gures above plot a representative 100-period portion of a larger 2000-period unconditional simulation of the three
solution methods with explicit forecast mappings from the approximate aggregate state space (A; K ) to realized prices and next-
period productivity ( p; K 0), i.e. the KS (in black), PARAM (in green), and XPA (in red) methods. The �rst column plots the realized
market-clearing pricep (solid line) and the forecast value of price (dotted line), computed by iterating forward the forecasting system as
suggested by Den Haan (2010a) rather than substituting realizations of aggregate capital at each point. Similarly, the second column
plots the realized capital series against the iterated forecasts for aggregate capital made on the basis of the forecast system alone.
During the simulation, the exogenous aggregate productivity process re
ects a Markov chain discretized using the Tauchen (1986)
procedure and is held constant across solution methods during the simulation. To achieve this, an identical simulated discretized
productivity process is input directly into the KS, PARAM, and XPA solutions, while a series of continuous aggregate shocks exactly
replicating the discretized productivity process is input into the REITER solution. For each method, the full 2000 period simulation
for each solution method begins after 500 periods, with an initial burn-in period discarded to avoid the in
uence of initial conditions
on the simulated aggregates. The exogenous productivity simulation used for calculation of the DH forecast series is distinct from
the simulation used within the model-solution step of any algorithm.





A Solution Methods

This section describes the equilibrium of the model with no aggregate uncertainty, as well as the details
of the KS, PARAM, XPA, and REITER solution methods. To maintain generality, the bulk of the section
focuses on describing the algorithms or equilibrium concepts themselves. Therefore, some practical numerical
issues involved in the solution techniques are mentioned in passing, but most numerical details (on grid sizes,
optimization algorithms, etc) are deferred to a listing in Appendix B.

A.1 No Aggregate Uncertainty Model

The equilibrium de�nition of the steady-state model or model with no aggregate uncertainty is identical to the
equilibrium with aggregate uncertainty discussed in the main text with constant aggregate productivity A.
Unless otherwise speci�ed, the steady-state model will be solved withA = 1. With a constant aggregate state
space, individual �rm states are given by the far smaller state space (z; k), and solution of the no aggregate
uncertainty model simply involves repeatedly guessing values of the market-clearing price or consumption,
computing an ergodic cross-sectional distribution� (z; k) based on the price-implied policies and adjustment
thresholds, and then checking consistency with the guessed price level. In the code available for this paper,
the price clearing is performed using bisection, and calculation of an ergodic cross-sectional distribution
given a price level follows the nonstochastic or histogram-based approach of Young (2010). In turn, this
approach requires a projection grid for value functions, a denser simulation grid for idiosyncratic capital,
and a discretized productivity process at the idiosyncratic level. For completeness, the equilibrium equations
are listed below:
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log(K̂ 0) = � K (A) + � K (A) log(K ):

Recall that from the household problem this yields a forecast wage level ^w = �
p̂ . Given these choices, the

solution algorithm works as follows. First, guess an initial forecast rule system̂� (1) = ( � (1)
p ; � (1)

p ; � (1)
K ; � (1)

K ).
Then, before the solution iteration takes place, draw a large numberTp





A.3 Parametrized Distributions (PARAM)

This is a discussion of the computational algorithm due to Algan et al. (2008, 2010a) (henceforth AADH)
which relies upon higher-order reference moments, as well as assumed functional forms for the cross-sectional
distribution of idiosyncratic capital and productivity � (z; k) in the solution of the model.

Just as in the KS algorithm, we �rst must discretize the aggregate and idiosyncratic productivity pro-
cesses following Tauchen (1986). Let the number of idiosyncratic (aggregate) productivity points be given
by nz (nA ). Then, prior to the solution of the model, we �rst determine a set of aggregate momentsm to be
included in the aggregate state space. Here, this will be the singleton of aggregate capital, the cross-sectional
mean K . Together with aggregate productivity, ( A; K ) therefore forms the aggregate state. Then, deter-
mine a set of reference momentsmref used to help pin down the shape of the cross-sectional distribution
of idiosyncratic capital and productivity. Here, this will be the �rst nM nz centered moments of the capital
distribution conditional upon each value of idiosyncratic productivity. Also, compute the exogenous ergodic
distribution of idiosyncratic productivity ~� z for future use.

The reference moments are needed in this algorithm because, together with the aggregate capital state,
they jointly determine the coe�cients of the 
exible exponential function form for the approximation to
� (zi ; k) at discretized levels ofzi :
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� Loop over the aggregate states (A; K ). For each (A; K ), use any nonlinear equation system
solver in p; K 0 to obtain p(A; K ) and K 0(A; K ). The method used in this paper is dampened
�xed-point iteration in the pair p; K 0.

{ For each value ofp; K 0, evaluate on the discretized grid forz and some spline projection
grid for k the following equations:
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� Compute the value of all reference moments for the next periodt + 1. These are higher-
order centered moments of the cross-sectional distribution of capital next period, and can
be computed directly via quadrature, given the policies and cross-sectional distribution
coe�cients of period t.

� Now that the reference moments are set for periodt + 1, along with the aggregate capital
state, compute the coe�cients of the cross-sectional distribution associated with periodt +1
using the exact same minimization step as above.

(d) After simulation is completed for all T periods, and a certain numberTerg of initial periods are
discarded, you have two options. If the reference moments are held constant at their steady-
state values, you simply have an unconditional simulation of the model. If a �xed-point on the
reference moments is desired, then update the reference moments in the outer loop now. The ap-
propriate method depends on your assumptions for the reference moments. If you have assumed
one unconditional constant set of reference moments not varying with aggregates, compute the
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� First, update the current vector of forecast rule coe�cients �̂ (s) by estimating
(�̂ p(A); �̂ p(A); �̂ K (A); �̂ K (A)) with OLS on the explicit aggregation dataset, segmented by dis-
cretized value ofA.

� Then, de�ne a vector of nA bias correction terms

xBias
p (A) = �̂ p(A) + �̂ p(A) log(K SS (A)) � log(pSS (A))

xBias
K (A) = �̂ K (A) + �̂ K (A) log(K SS (A)) � log(K SS (A))

and adjust the new forecast rule coe�cients' constant terms with

�̂ p(A)  �̂ p(A) � xBias
p (A)

�̂ K (A)  �̂ K (A) � xBias
K (A):

� Then, check the estimated coe�cients against the old coe�cients �̂ (s) . If they are within some
tolerance according to max absolute deviations, the model is solved and exit the routine. If the
forecast rules have not converged, use dampened �xed-point iteration to update the forecast rule
system �̂ (s+1) based on rule (s) and the newly estimated system.

Note that the di�erencing o� of xBias (A) is an attempt to correct for the Jensen's inequality bias induced
by substitution of aggregate states into idiosyncratic policies. The bias results from lack of variation in the
cross-section of idiosyncratic capital when recovering market-clearing prices and next-period capital stocks.
However, the steady-state model prices and capital stocks do incorporate cross-sectional integration over a
distribution of idiosyncratic capital presumably similar to the distributions within the model with aggregate
uncertainty. The modi�cation by the term xBias (A) requires that the estimated forecast system be able to
exactly reproduce as a �xed point the steady-state prices and aggregate capital stockspSS (A) and K SS (A),
conditional upon aggregate productivity.

Note also that after the model is solved, simulation is completed exactly as in the KS algorithm, using
the Young (2010) nonstochastic or histogram-based approach, and requiring market-clearing in each period
with integration over the full cross-sectional distribution of idiosyncratic capital.

A.5 Projection Plus Perturbation (REITER)

The REITER solution method is based on three steps, and provides a perturbation approximation to the
full rational expectations equilibrium. The �rst step is to solve the steady-state version of the model, with
no aggregate uncertainty and aggregate productivity held �xed at a value of A = 1. The steady-state
solution is identical to the one used, for example, as an input into the PARAM solution. The second step
is to set up a system of nonlinear equations de�ning the model's equilibrium, which is covered in the �rst
subsection below. The �nal step is to linearize and solve the system using standard numerical di�erentiation
and solution techniques, covered in the second subsection below.

A.5.1 Nonlinear System of Equations in the Discretized Model

We �rst establish a grid of nz idiosyncratic productivity points and a Markov transition matrix � zij =
P(zt +1 = zj jzt = zi ) following Tauchen (1986). Then, we establish a grid ofnk idiosyncratic capital stock
nodeski



f (A t � 1; zi ; kj ; wt � 1



A few practical comments are in order. First, in general the approximation nodes used for interpolation
of the value function in k will be di�erent (and less dense) than the discrete values ofk used to store the
cross-sectional distribution � t above. The value" t is the exogenous shock to aggregate productivity. The
vector � t is the stacked set of expectational errors using Sims (2002) notation which must be applied to the
expectations in the Bellman equations above, and these expectational errors depend upon aggregates only
as the idiosyncratic uncertainty re
ected in the discretization of idiosyncratic productivity is already taken
into account through the summation with respect to the transition matrix � z .





� Within the PARAM solution, integration over the cross-sectional densities is performed using standard
Simpson quadrature rules.

Table B2: Additional Accuracy Statistics for Forecast Rules

Statistic K 0, KS K 0



To obtain an average percentage innovation in aggregate productivity which equals� A exactly, we choose
the shock threshold �s to solve

� A = �s
n AX

k=1

~� Ak (log(An A ) � log(Ak )) ;

where ~� A is the ergodic distribution of the discretized aggregate productivity processA.
As noted in Appendix B, to compute the impulse responses plotted in the main text, we setTIRF = 50,

Tshock = 25, and N = 2000, and we hold exogenous drawsuit ; si constant across simulation methods. We
also setnA = 5.

One �nal comment is in order regarding the REITER solution method. Because the REITER approach
yields a linearized solution, the simulation-based analysis of Koop et al. (1996) is unnecessary. Although
for completeness and comparability we perform the simulation-based impulse response with the REITER
method, a much simpler alternative, invariant to shock scaling or initial conditions, is available. In particular,
when writing the REITER solution as X t = AX t � 1 + B" At , where X t is the endogenous vector de�ned in
Appendix A and "At is a continuous shock to aggregate productivity"At � N (0
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Figure B1: REITER Price Dynamics, Baseline and Denser Discretization
Note: The �gure above plots a representative 100-period portion of a larger 2000-period unconditional simulation of the market
clearing price series pt obtained by applying the REITER solution method with two histogram grid densities: 150 grid points (solid
line) and 200 grid points (dotted line). For each method, the full 2000 period simulation for each solution method begins after 500
periods, with an initial burn-in period discarded to avoid the in
uence of initial conditions on the simulated aggregates.
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Figure B2: Realizations vs. One-Period Ahead Forecasts
Note: The �gures above plot a representative 100-period portion of a larger 2000-period unconditional simulation of the three
solution methods with explicit forecast mappings from the approximate aggregate state space (A;K) to realized prices and next-
period productivity (p;K 0), i.e. the KS (in black), PARAM (in green), and XPA (in red) methods. The �rst column plots the
realized market-clearing price p (solid line) and the forecast value of price (dotted line), given the currently realized value of (A;K).
The second column plots the realized capital series (solid line) against the one-period ahead forecasts (dotted line) made on the
basis of (A;K). During the simulation, the exogenous aggregate productivity process re
ects a Markov chain discretized using the
Tauchen (1986) procedure and is held constant across solution methods during the simulation. To achieve this, an identical simulated
discretized productivity process is input directly into the KS, PARAM, and XPA solutions, while a series of continuous aggregate
shocks exactly replicating the discretized productivity process is input into the REITER solution. For each method, the full 2000
period simulation for each solution method begins after 500 periods, with an initial burn-in period discarded to avoid the in
uence
of initial conditions on the simulated aggregates.
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Figure C1: Impulse Response, Linear vs. Simulation-Based

Note: The �gure above plots the linearized impulse response function (in dotted lines, labelled REITER-LIN) to a positive shock
to the aggregate productivity series At in the baseline REITER solution of the heterogeneous �rms model. Given the endogenous
variables Xt of the linearized system describing the economy, a solution Xt �XSS = A(Xt�1 �XSS) + B"At of the model trivially
yields impulse responses At�1B representing the economy’s local response to the aggregate productivity shock "At. The impulse
response here is scaled by the assumed standard deviation of innovations to the aggregate productivity series, with the exogenous
shocked series itself plotted in the right hand side of the second row. In solid lines labelled REITER, the �gure plots analogous impulse
responses computed as suggested by Koop et al. (1996), based on 2000 repeated simulations of a discretized aggregate productivity
process of 50-period length each, with and without imposed productivity shocks at the period labelled 1 above. The REITER-LIN
responses should be interpreted as 100 times log deviations from steady-states, while the REITER responses are equal to 100 times
average log di�erences between the shocked and unshocked simulations.



Figure D1: Impulse Response, Productivity Shock in Extended Model

Note: The �gure above plots the linearized impulse response function to a positive shock to the aggregate productivity seriesA t in the
extension of the heterogeneous �rms model augmented with aggregate demand and labor preference shocks. These impulse responses
are computed after solving the extended model using the REITER technique and are therefore labelled REITER-EXTENDED. Given
the endogenous variablesX t of the linearized system describing the economy, a solutionX t � X SS = A(X t � 1 � X SS ) + B� t of the
model trivially yields impulse responsesA t � 1B representing the economy's local response to each aggregate shock in the vector� t .
The impulse response here is scaled by the assumed standard deviation of innovations to the aggregate productivity series, with the
exogenous shocked series itself plotted in the right hand side of the second row.
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Figure D2: Impulse Response, Labor Preference Shock in Extended Model

Note: The �gure above plots the linearized impulse response function to a positive shock to the labor disutility series DN
t in the

extension of the heterogeneous �rms model augmented with aggregate demand and labor preference shocks. These impulse responses
are computed after solving the extended model using the REITER technique and are therefore labelled REITER-EXTENDED. Given
the endogenous variables Xt of the linearized system describing the economy, a solution Xt � XSS = A(Xt�1 � XSS) + B�t of the
model trivially yields impulse responses At�1B representing the economy’s local response to each aggregate shock in the vector �t.
The impulse response here is scaled by the assumed standard deviation of innovations to the labor disutility series, with the exogenous
shocked series itself plotted in the left hand side of the fourth row.


