

Abstract:

Recent m

Contents:

1 Introduction 3

1.1 What is Fuzzing? 3

1.2 Why Fuzzing?

5

2 Fuzzer Structure

6

2.1 Virtual Machine and Environment

6

2.2 FuzzServer.py and FuzzClient.py

7

2.4 Fuzzer.py

8

2.5 Mutator.py

9

2.6 Executor.py

11

2.7 reMutate.py 12

3 Fuzzing VLC

12

3.1 Why VLC?

12

2

3.2 Crash Results

14

3.3 Optimizing Fuzzing Parameters for Future Fuzzing Runs

15

3.3.1 Mutation Percentage

16

3.3.2 Number of Iterations and Seed Selection

18

3.3.3 Timeout

20

3.3.4 Number of Execue3m.fi

ces

204on

lsns aaesse n

ss23s5
nces

s24s33R3

randomly testing mutant files in the input space, using knowledge of the

program and the structure of it’s inputs, generational fuzzing aims to only tests

minimum and maximum values within test cases (e.g. for a piece of code like: “if

3 <= x <=10:”, the edge cases 3 and 10 are worth testing, as well as 2 and 11, but

othe

Initially, for this project, I looked at two sepa

the amount of a program’s input space that can be fuzzed in a given amount of

time, the fuzzer is both distributed and multiprocessing, but for distributed

fuzzing runs to work, port forwarding must be activated in the network settings

of the server virtual machine (using the guest and host ip’s respectie

t

 h

ox&

&

xx&

&

��

	

FuzzerConfig.txt file. Otherwise, the parameters are passed in as arguments

when the Fuzzer process is created by a FuzzClient process as part of a

distributed run. The Fuzzer process creates one Mutator process and the number

of Executor processes specified by the fuzzing parameters. It passes to each child

process a process/thread safe Queue to convey mutated file names from the

Mutator to the Executor processes as well as a similarly synchronized Queue for

the names of old mutated files that need to be removed. The Fuzzer process then

sits in a loop checking if any of the Executors have died. If this is the case, the

 t

es

s i ⁸͆ ..

ɓ

⅔u .

⁸ ͆ .. ɓ ⅔ sse

s

c ss sc

s o̤

ttc

z s

d

_/ Ō

s tttttttttttt

tttt

ttt
ttttt

ttt t ttttt ttt

/t /

 z

 z

 z

tz/z

z

z

 z zt

 ztz

t

 z

/

t t

/

t

z

tz

t

 z t

z

t

tz

 ttt t

t ? ͗s ḛ

p s

randomized write location between beginning and the end of the file and writes

a byte value between 0 and 255 to that location in the list. These random

attempts to delete them. Once finished, the Mutator puts a “STOP” string on the

queue as a poison pill for all other processe

[15]. And VLC and other media players are extremely complex, dealing with

many different file formats on many different platforms. This complexity makes

http://samples.mplayerhq.hu/

Another file seed file was separately found to cause crashes without any

mutations prior to the initial fuz

u

n

 leli l

i

h

s

s

a ll y

 i

e rai
sstfa nih a

ar

l

l

l

s

y

if

fer
e

i fio

l

ala
i

 on

l

s

 ir

3.3 Optimizing Fuzzing Parameters

There are four parameters in FuzzerConfig.txt that have an extremely

large impact on the ef

severely the second round (as it passed all input checks in the first round).

The graph of Hits vs. Fuzz Percentage above indicates that as the mutation

percentage increases, the number of known crashers that pass crash (and thus

pass input checks) declines. However, that decline is not particularly steep, and

appears even to flatten out as the mutation percentage approaches 20%. Even as

we are fuzzing less files, the average percentage of mutated bytes in files being

executed and passing input checks is

research done on seed

3.3.3 Timeout

The timeout parameter sets how long the Executor process will wait before

killing an executing target process. There is virtually no previous research done

on this setting because it is unique to the target application and environment for

the fuzzing run; the slower the computer or the larger the application, the longer

it takes for each execution, and thus the longer the timeout must be to

accommodate the extra startup time. Furthermore, the type of files affects th

The graph above su

3.3.4 Number of Executor Processes

This is probably the easiest parameter to figure out. The short and obvious

answer is: as many as possible. The data in the graph below is clear and expected:

there are very good returns for introducing a little bit of parallelism, bu

t t

te

r

e

u

aaa

a

aa

a

a

aa

a

a u

aaa

aa

aaa

aa

a

aaaaata

a a aaaaa

aaaa aaaaaa

a

a

a

aaaaaaaaaaaaaa

aa

a

aa

a

aa

a

aaa

aa

aaaaaaaaaaaaaas aaaľy

n
aa at
a

uuaea

w

e

eaὉ e aaxgaa aὉ asaafaas Pof

P

a

a

o

s

v

e

a

a

a

a

ᵠ

a

a

t

d

a

a

t

a

a

a

f

t

s

ᵠ

������

4. Conclusions and Further Work

The fuzzing run on VLC yielded a lot of important information. First and

foremost, at least ten unique crashes, one of which appears to be highly

5 References

1. Amorim, Roberto, Edwards, John, Gan, Michael, Brooker, Marc and
Naylor, David. "RareWares: AAC Decoders." RareWares.,
http://www.rarewares.org/aac-decoders.php.

2. Bekrar, Sofia, Chaouki Bekrar, Rolan Groz, and Laurent Mounier. 2012. "A
Taint Based Approach for Smart Fuzzing." IEEE Computer Society.

3. Codenomicon. 2012. "Fuzz Testing: Improving Medical Device Quality
and Safety." MDISS Technical White Paper Series.

4. Constantin, Lucian. "Critical Vulnerability in Affects ma

t4s

t.

V

Le V

4

ni.

.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"""mmmimimmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm/J6

t.

/mJ"ġ"uYAġec"'srs

j0

0"

"""" B"m

nA"

mms"

 mm

"

P"

P

P

M

Bs

 P"""""""""""""ḛ """""""""""""""""""""""""""""""""B""""""""""" """"""""""mmmmmmmmmmmmmmmmmmmmmm"m"m mmmmm'mm'BmB mme"""mmm""

a

m"

""a""a"""""a""

az"" na""s"&"ḛ

jma""&"""

aV

la

"

m

n""P""m"a"

"""m"ai"imm"Pa""""Pmm"mm

a"""""""a"lma

V""¯/JJmmm
i

"

m

"

"

A

P"

" F """∩

"ḛAAO "Ξẘ""" "c" "AA"""" A " "Ama"mA"""á" " "

Ἤ

"

m

-

"

"

m

P

a

"

"

Ὓ

"

ἁ

m

"

ầ

ḓ

m

m

A

m

"

"

m

m

"

m

"

m

-

"

m

m

g

J

J

m

m

i

AAm"mi"

"aἠᵡ " "mmmimmmḓ m"m"

ṕ
ṣ

m
m

m
i"m

m
m

m
i"m

m
""

"m
m

aя
"

""A
"

"A
~

Á
îm îmm îîm" ''Á1 '"0 ""0 " 0 "¾"Á PÁ AÁ Á Á Á Á AÁ Á Á Á Á Á Á Á s AÁ "

http://www.rarewares.org/aac-decoders.php
http://www.rarewares.org/aac-decoders.php
http://samples.mplayerhq.hu/
http://samples.mplayerhq.hu/
http://resources.infosecinstitute.com/fuzzing-mutation-vs-generation/
http://resources.infosecinstitute.com/fuzzing-mutation-vs-generation/
http://en.wikipedia.org/wiki/Libavcodec
http://en.wikipedia.org/wiki/Libavcodec
http://www.cs.fsu.edu/%7Eredwood/OffensiveComputerSecurity/lectures.html
http://www.cs.fsu.edu/%7Eredwood/OffensiveComputerSecurity/lectures.html
http://www.cs.fsu.edu/%7Eredwood/OffensiveComputerSecurity/lectures.html
http://www.cameron.edu/uploads/8d/e3/8de36a6c024c2be6dff3c34448711075/5.pdf;
http://www.cameron.edu/uploads/8d/e3/8de36a6c024c2be6dff3c34448711075/5.pdf;
http://www.cameron.edu/uploads/8d/e3/8de36a6c024c2be6dff3c34448711075/5.pdf;

Appendix A: Comparison of Mutator
Function Performance

 €� Ž�

��

28

29

Appendix B: Source Code

FuzzClient.py

Dylan Wolff 5/8/15

FuzzClie

s = reply.split('|')

#receive a file of length specified by s[1]

guy = recFile(clientSocket, int(s[1]))

#send acknowledge

clientSocket.send("sup")

 s r e gt t e r c l] fġ g gg gs g p k kÒ n Ò x fpn(p t tfff S ts Wg V sg) V

e T Ĩs(Tcen

t

v

p

r

 sTxas

H
x

[
g

,s
g

ÒF
k

²

Ò

k

A

- Y A

ś

S

 Te--¯

e

e.̾
s

q

°

f

Ĩ

g

s

g

 u e ! ess s ğaя()

 e!

!

e

T

) e

s

) e!!T eeeğğ sflc

expected

number of bytes

#first send across the size of the file so the client knows how much to expect

targetSocket.recv(3)

#ack after every send t eyn end lgd enl e ekt s keef ek eafyg s ayk e dea skya ks

awgetaocketaret e 3 eV

aFk amwĪĪ cğet ğ ğaet ğgzĪt ğwk oĠ e eğ

awgetaocketargt kx3)

3e

#

#

#tft

e

x

ga xgeC

=

:t

ğğ kğ Ħ ġĨ t iğ ğ Ĩ k ġ ğğkğ Ĩe

t

kĪr xġ

a

KĞġgre eġgĞi Ò i 6aS ruxĞi h :i \ġ 6iē sthw3 hr uxġi h= sē s6 \ ġa Ki sK rntġy :s\ Ĩ 6sēs t ey3gi K rc

h

¡ =̈sēs 6\ ĨaDru mcgs

 e u F r e Kğee ğ ğēğğ e u ğē

ġ

a DğĨ wi f V ee ġew e ġ t ğğğM

#figure out the appropriate number of sample flies to send over

samplesSent = 0

if remainder > 0:

extra = 1

remainder = remainder - 1

else:

extra = 0

#send them over

while samplesSent < samplesPerClient + extra:

sendFile(samples[0], connectionSocket)

samples.remove(samples[0])

samplesSent = samplesSent + 1

#send the finis

#while we haven't received files from all of the clients

os.makedirs(path + '/servCrashers/' + directory)

#make a directory for our first expected crash folder

clientsReported = clientsReported + 1

#tally the client for reporting in

connectionSocket, addrs = serverSocket.accept()

#accept the connection

#receive files until we get the done snding files token

while True:

print "waiting to receive"

reply = ''

while len(reply) != 4096:

reply = reply + connectionSocket.recv(4096-len(reply))

if reply == 4096*'a':

#if we get the end of folder token, then we cr

print "All Clients Finished Fuzzing"

def fuzzR

if __name__ == '__main__':

#Get parameters for fuzzing run

path = '/Users/Fuzzer/Desktop/'

f

 process = multiprocessing.Process(target=Fuzzer.Fuzzer, args=((response != 'n'), timeout, fu

 #poison pill

 if obj == "STOP":

 self.queue_in.put("STOP")

 fileout = open(self.path + "State/" + str(self.my_pid), 'w')

 self.filename = params[0]

 print "Executing ", self.filename

 #run the file

 x = [self.program_name, self.path + "Mutated/" + self.filename]

 self.simple_debugger(x)

 #then log as done

 fileout = open(self.path + "State/" + str(self.my_pid), 'w+')

 fileout.truncate()

 fileout.write(self.filename + " | " + self.mutator_specs + " | " + str(True))

 fileout.close()

 #try to remove the old mutated file

 try:

 os.remove(self.path + "Mutated/" + self.filename)

 except:

 #if we can't because of a zombie executing process, put in on a queue for later

 self.qn.put(self.filename)

 try:

 #serialize qn and add to a

v & _

ᵰ

ѐ

r

 ������

 def my_event_handler(self, event):

 crash = Crash(event)

 crash.fetch_extra_data(event, takeMemorySnapshot = 2)

 #Log the crash in a new unique crash folder in the Crashers directory

 folder = str(uuid.uuid4())

 os.makedirs(self.path + '/Crashers/' + folder)

 f = open(self.path + '/Crashers/' + folder + '/crashlog.txt', 'w')

 f.write(crash.fullReport(bShowNotes = True))

 f.close()

 f = open(self.path + '/Crashers/' + folder + '/crashsrc.txt', 'w')

 f.write(self.mutator_specs)

 f.close()

 def simple_debugger(self, argv):

 # This function creates a Debug object and executes the target program and file under it

 ("ullAvailPhy

#sort them by size small to large

samples.sort(key = lambda sample: (os.path.getsize(self.path + "Samples/" + sample)))

#mutate each sample

for sample in samples:

self.mutate(self.path, sample, self.fuzzFactor, 0, self.iterations)

self.q.put("STOP")

def log(self, sample, iters):

#this function logs the progress of the mutator in case a fuzzing run is interrupted

fileout = open(self.path + "State/Mutator", 'wb+')

Next Resume mutating files from where the Mutator left off

samples = os.listdir(self.path + "Samples")

samples.sort(k

filesize = os.path.getsize(path + "Samples/" + filename + ext)

#get the filesize

numwrites = int(math.ceil(fuzzFactor * filesize))

#get the number of writes to do (size/factor)

for i in range(start, iterations):

shutil.copy2(path + "Samples/" + filename + ext, path + "Mutated/" + filename + str(i) +
ext)

#copy the sample into the new folder with a new name

fileout = open(path+ "Mutated/" + filename + str(i) + ext, 'r+b')

totalsize = 0

currentMutes = os.listdir(path + "Mutated")

for f in currentMutes:

totalsize = totalsize + os.path.getsize(path + "Mutated/" + f)

return totalsize

def mutate(self, path, fullfilename, fuzzFactor, start, iterations):

This function mutates files quickly, but uses a lot of m

random.seed(randSeed)

Dylan Wolff

5/8/15

reMutate.py is a script that reads in any number crashsrc.txt file from the remutateFolder on

the desktop and recreates the mutated file according to specifications within. The original

the original sample files need to be placed in the Sampln

Ⱦ

randloc = random.randrange(filesize)

new[randloc] = chr(rbyte)

#write to the new file in the Mutated directory

fileout = open(path + "Mutated/" + str(j) + samplename, 'w+b')

fileout.write("".join(new))

fileout.close

58

