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Abstract:  This thesis examines the application of genetic programming to 
evolving strategies for playing an iterated version of the Prisoner’s Dilemma 
game. The study examines the evolution of strategies for a single population of 
players pitted against a static environment, as well as the co-evolution of 
strategies for two distinct subpopulations of players competing against one 
another. The results indicate that the strategies that can be evolved are strongly 
influenced by the function set provided during the design process.  In co-
evolutionary runs in particular, the function set shapes the environment of 
opponents that an individual strategy is evaluated against.  Experimental runs that 
alter the makeup of the function set facilitate a discussion of how different 
function sets and environments can lead to diverse strategies with varying levels 
of performance. 
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1. Introduction 
 
 The Prisoner’s Dilemma has previously been used to show the validity and 

effectiveness of applying genetic algorithms in a game-theoretic context.  [2,5].  The 

current body of research consists of various methods for representing strategies for the 

Repeated Prisoner’s Dilemma.  In each case, the representation scheme that is chosen 

provides a framework for the evolutionary process and dictates the number of previous 

moves that a given strategy can consider in the calculation of its next move.  For 

example, Miller [12] modeled strategies as bit-string representations of finite state 

automata whereas Axelrod’s [2] more direct approach used bit strings to reflect the last 

three moves of the game’s results history.  Some of these studies evolve strategies based 

on their performance against a fixed environment [6,12] while others have introduced the 

1 





  Robber 2 
  Deny (Cooperate) Confess (Defect) 

Deny (Cooperate) 3 , 3 10 , 1 Robber 
1 Confess (Defect) 1 , 10 5 , 5 

Table  2.1 The Prisoner's Dilemma with payoffs as time in jail 
 

 Economic game theory provides tools for analyzing this situation.  Table 2.1 

models the above scenario as a strategic game, where Robber 1’s jail sentence is always 

listed first.  The strategies available for each prisoner boil down to two options:  either 

confess to the crime (Defect from accomplice) or deny the allegations (Cooperate with 

accomplice). 

 Each player in the game has one objective: to minimize his time in jail.  Robber 1 

has no knowledge of what Robber 2’s move will be.  However, Robber 1 knows that if 

Robber 2 confesses, his best response is to confess – he receives only 5 years in jail if he 

confesses as opposed to 10 years if he denies the allegations.  He also knows that if 

Robber 2 chooses to deny, his best response is to confess – he receives only 1 year in jail 

if he confesses as opposed to 3 years if he denies.  No matter what Robber 2 does, it is 

always in Robber 1’s best interests to confess.  Thus, confession is a dominant strategy 

for Robber 1 [4].  Since, a similar analysis holds true for Robber 2, the dominant strategy 

equilibrium is for both robbers to confess.  Curiously, even though [Confess, Confess] 

is a dominant strategy equilibrium, both parties would be better off if the outcome was 

[Deny, Deny]. 

 
  Player 2 
  Cooperate Defect 

Cooperate R = 3 , R = 3 S = 0, T = 5 Player 
1 Defect T = 5 , S = 0 P = 1 , P =1 

Table  2.2 The Prisoner’s Dilemma, with payoffs as points 
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 The game consists of four possible payoffs, which shall be abbreviated R, T, S and 

P.  R is the reward for mutual cooperation, T is the temptation to defect, S is the sucker’s 

payoff, and P is the punishment for mutual defection.  In order for the Prisoner’s 

Dilemma to be present, two relationships must apply.  First, it must be true that T > R > P 

> S.  This ordering preserves the proper incentive structure, as the temptation to defect 

must be greater than the reward for cooperation, and so on.  Second, the reward for 

cooperation must be greater than the average of the temptation to defect and the sucker’s 

payoff – i.e. R > .5(T+S).  This removes the ability of players to take turns exploiting 

each other to do better than if they played the game egoistically [1]. 

 A further technical analysis shows how the [Defect, Defect] dominant strategy 

equilibrium is undesirable, but not easily avoidable.  [Defect, Defect] is not 

considered an efficient outcome.  An outcome in a game is considered Pareto efficient if 

no other outcome exists that makes every player at least as well off and at least one 

player strictly better off.  Therefore, mutual cooperation is the only Pareto efficient 

solution in the Prisoner’s dilemma [6].  However even though mutual cooperation is 

Pareto efficient, the [Defect, Defect] outcome is not easily avoidable because it is a 

Nash equilibrium.  A Nash equilibrium is an outcome of a game where neither player can 

unilaterally change his move in order to improve his own payout [4].  It follows that 

[Defect, Defect] is a Nash equilibrium since a player’s best choice is to defect when 

he knows that his opponent will defect.  Since [Defect, Defect] is the only Nash 

equilibrium, it is impossible for two rational egoists who play the game only once to end 

up in any other state. 
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 Although the possibility of mutual cooperation emerging in such a situation seems 



and defects otherwise.  The Pavlov strategy can either defect or cooperate on the first 

move1. 

3. Genetic Programming 
 
 Genetic programming (GP) is an evolutionary computation technique which is 

based upon the genetic algorithm (GA) developed by Holland [7].  The genetic 

programming paradigm, as it will be used in the scope of this paper, was popularized by 

John Koza [8]. 

 Genetic algorithms take advantage of the Darwinian concept of natural selection 

to evolve suitable solutions to complex problems.  In the typical genetic algorithm, a 

possible solution to a problem – called an individual – is represented as a bit string.  Each 

individual is assigned a fitness, which is simply a determination of how effective a given 

individual is at solving the problem.  For example, when evolving a game-playing 

strategy, a fitness measure might be the number of points the individual scored in the 

game.  To kickoff the evolutionary process, an initial population of individuals is 

generated through a random process as detailed by Koza [8].  Next, the fitness of each 

individual in the population is evaluated.  Favoring individuals with 



solutions as actual computer programs.  Programming languages such as Lisp are well-



to simulate the process of Darwinian evolution and natural selection thus building 

stronger populations from generation to generation.  In reproduction, an individual is 

selected from the population and then simply copied into the new generation.  The 

crossover operation, illustrated in Figure 3.2, selects two different individuals from the 

population, randomly selects one node from each to be the crossover point, and then 

swaps the subtrees found at the crossover nodes to create two new individuals for the new 

generation.  Lastly, mutation introduces random changes into the new generation.  When 

mutation (Figure 3.3) is applied, an individual is selected and a mutation point is selected 

at random.  A randomly generated subtree is inserted at the mutation point and the 

mutated individual is added to the new population. 

 
Figure  3.2 An example of the crossover operation 
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Figure  3.3 An example of the mutation operation 

 
 The method used to select individuals for the genetic operations can vary, but is 

typically based on fitness.  Two popular se



lexicographic parsimony pressure, n individuals are chosen at random.  As in regular 

tournament selection, the individual with the best fitness is selected.  However, in the 

event of tie, lexicographic parsimony pressure selects the individual with a smaller tree 

size.  This multiobjective technique helps limit the size of the evolved trees and therefore 

reigns in bloat [10]. 

 Selection methods can be supplemented by a technique known as elitism.  The 

reader may have observed that the selection methods described above are probabilistic in 

nature – although they will select relatively more fit individuals, they do not necessarily 

ensure that the most fit individuals pass on to the next generation.  If an individual is not 



playing strategies.  Co-evolution allows an individual’s fitness to be calculated based on 

its performance playing a game against another evolving subpopulation. 

5. Methodology 

The Problem 
 In this version of the Repeated Prisoner’s Dilemma, the payoff structure will be 

defined as [R, T, S, P] = [3, 5, 0, 1] as in Figure 1.2.  Each individual plays the Prisoner’s 

Dilemma game 100 times against the n opponents in its environment.  For static 

environments, this means playing any number of pre-determined, well-known strategies.  





most recent to least recent, respectively) while OPP_LAST, OPP_2ND, OPP_3RD, and 

OPP_4TH



Evolutionary Operators and Parameters 
 Unless otherwise noted, runs performed during the study used the following 

evolutionary operators and parameters:  The evolutionary operators were crossover and 

reproduction, used at the probability of .7 and .3 respectively.  Tournament selection with 

lexicographic parsimony pressure and a tournament size of 7 was used to select the 

individuals to be operated upon. 

 In runs against a static environment, a population of 500 individuals was evolved 

for 100 generations.  For co-evolutionary environments, both subpopulations consisted of 

500 individuals and were run for up to 500 generations. 

The Experiments 

Table  5.1 Summary of the environments of pre-defined strategies used in genetic programming runs 

Environment Name Opponents in Environment 



in the current evolutionary generation.  Figure 5.2 shows a high level view of the 

experimental procedure.  In Step 1, the function set was sequentially set equal to three 

predefined function sets:  FS1, FS2, and FS3.  The function set FS1 consisted of eight 

functions (MY_LAST, MY_2ND, MY_3RD, MY_4TH, OPP_LAST, OPP_2ND, OPP_3RD, 

and OPP_4TH) that could check the last four moves of each player in the history.  After 

this, FS2 was constructed by adding the HAS_COOP and HAS_DEFECTED functions to 

FS1. The evolutionary process was again set in motion in all environments.  Finally, the 

function set was reduced to FS3, a function set consisting of just two functions:  

MY_LAST and OPP_LAST. 

Procedure: 
1. Set F = FS1 = {MY_LAST, MY_2ND, MY_3RD, MY_4TH, OPP_LAST, 

OPP_2ND, OPP_3RD, OPP_4TH} 
2. Run against all environments 
3. Set F = FS2 = {MY_LAST, MY_2ND, MY_3RD, MY_4TH, OPP_LAST, 

OPP_2ND, OPP_3RD, OPP_4TH, HAS_COOP, HAS_DEFECTED } 
4. Run against all environments 
5. Set F = FS3 = {MY_LAST, OPP_LAST } 
6. Run against all environments 

Figure  5.2 The experimental procedure and various  function sets 

6. Results and Discussion 

 Static Environments 
 A summary of fixed (i.e. static) environment results can be found in Table 6.1.  

One of the most interesting static environments was Environment 3, which consisted of 

the opponents 

5.
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Evolved Strategy: 
(OPP_LAST D (MY_LAST D C D) (OPP_2ND D C (MY_LAST C C D))) 

 
Evolved Strategy: 



 

Table  6.1 Summary of results for genetic programming runs against environments of pre-defined opponents 

 Function Set 1 (FS1) Function Set 2 (FS2) Function Set 3 (FS3) 
Environment 



 

 Additionally, the results show that changes to the function set can limit this 

diagnostic ability and thus produce less-effective strategies.  This became apparent when 

the function set FS3 was used to evolve strategies in the same environment (Environment 

3).  The results of this run are summarized in Figure 6.2.   

Evolved Strategy: 









 

strategy.  In fact at one point (Generation 48), once the population was dominated by 

Grim Trigger strategies, the strategy All C



 



 

however, the data shows that the Grim Trigger strategy performed comparably to 

Tit-for-Tat and the best-of-generation strategy. 

 The fact that Grim Trigger emerged from co-evolution speaks to the ability of 

genetic programming to evolve human-competitive solutions to game theoretic problems 

like the Repeated Prisone





 

 In co-evolution, the pre-defined opponents were replaced by a strategy’s peers in 

the evolving population.  Grim Trigger, a strategy regarded as a good general 

strategy in previous work, emerged as the most effective strategy.  Grim Trigger was 

shown to perform similarly to Tit-for-Tat in this environment.  The results suggest 

that changing the function set has an increased effect in co-evolution since the changes 

alter the environment of opponents. 

 The application of genetic programming to evolutionary game theory discussed in 

this paper suggests some interesting directions for future research.  From a game-

theoretic perspective, the results of the study might be analyzed further.  Are strategies 

that emerge during evolution well-generalized strategies, evolutionary stable, or both?  

This study also points out that the results of genetic programming runs are sensitive to 

changes made to the function set.  Additional research might build on these findings to 

provide a more complete understanding of the general characteristics of functions that, 

when added, tend to improve results. 
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class GrimTrigger extends Strategy 
{ 
    public char getMove() 
    { 
 if(hasDefected){ 
  return 'D'; 
 }else{ 
  return 'C'; 
 } 
    } 
} 

 
class Pavlov extends Strategy 
{ 
    public char getMove() 
    { 
 if(moveNumber == 0) return 'C'; 
 
 if(oppHistory[moveNumber-1] == myHistory[moveNumber-1]){ 
  return 'C'; 
 }else{ 
  return 'D'; 
 } 
    } 
} 

 
class TitForTat extends Strategy 
{ 
    public char getMove() 
    { 
 if(moveNumber == 0) return 'C'; 
  
 if(oppHistory[moveNumber-1] == 'C'){ 
     return 'C'; 
 }else{ 
     return 'D'; 
 } 
    } 
} 

 
class CBTFT extends Strategy 
{ 
    public char getMove() 
    { 
 if(moveNumber == 0) return 'C'; 
  
 if(oppHistory[moveNumber-1] == 'C'){ 
     return 'D'; 
 }else{ 
     return 'C'; 
 } 
    } 
} 

 
class DBTFT extends Strategy 
{ 
    public char getMove() 
    { 
 if(moveNumber == 0) return 'D'; 
  
 if(oppHistory[moveNumber-1] == 'C'){ 
     return 'D'; 
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 }else{ 
     return 'C'; 
 } 
    } 
} 

 
class DPC extends Strategy 
{ 
    public char getMove() 
    { 
 if(hasCooperated){ 
     return 'C'; 
 }else{ 
     return 'D'; 
 } 
    } 
} 

 
class DTFT extends Strategy 
{ 
    public char getMove() 
    { 
 if(moveNumber == 0) return 'D'; 
  
 if(oppHistory[moveNumber-1] == 'C'){ 
     return 'C'; 
 }else{ 
     return 'D'; 
 } 
    } 
}
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Appendix B:  Java Source Code for Functions and Terminals  
 
For brevity, the source code for the functions and terminals used in static environment 
experiments is not included.  The source code shown here was used for co-evolution.  It 
contains modifications to the classes used in the static environments which facilitate co-
evolution and add the ability to specify a pre-defined strate



 

     final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
    { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=0) 
     state.output.error("Incorrect number of children for node " +  
          toStringForError() + " at " + 
          individualBase); 
    } 
     
    public void eval(final EvolutionState state, 
       final int thread, 
       final GPData input, 
       final ADFStack stack, 
       final GPIndividual individual, 
       final Problem problem) 
    { 
 PDdata data = ((PDdata)(input)); 
 data.x = 'D'; 
    } 
} 

 
package ec.app.pd_compete.func; 
import ec.*; 
import ec.gp.*; 
import ec.util.*; 
 
import ec.app.pd_compete.*; 
 
public class HAS_COOP extends GPNode { 
    public String toString() { return "HAS_COOP"; } 
     
    public void checkConstraints(final EvolutionState state, 
     final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
    { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=2) 
     state.output.error("Incorrect number of children for node " +  
          toStringForError() + " at " + 
          individualBase); 
    } 
     
    public void eval(final EvolutionState state, 
                     final int thread, 
                     final GPData input, 
                     final ADFStack stack, 
                     final GPIndividual individual, 
                     final Problem problem) 
    { 
        PD pd = (PD)problem; 
 
 boolean oppHasCooperated; 
 if (pd.whosTurn == pd.P1){ 
     oppHasCooperated = pd.p2HasCooperated; 
 }else if(pd.whosTurn == pd.P2){ 
     oppHasCooperated = pd.p1HasCooperated; 
 }else{ 
     oppHasCooperated = pd.p3HasCooperated; 
 } 
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 if(oppHasCooperated){ 
     children[0].eval(state,thread,input,stack,individual,problem); 
 }else{ 
     children[1].eval(state,thread,input,stack,individual,problem); 
 } 
 
    } 
} 

 
package ec.app.pd_compete.func; 
import ec.*; 
import ec.gp.*; 
import ec.util.*; 
 
import ec.app.pd_compete.*; 
 
public class HAS_DEFECTED extends GPNode { 
    public String toString() { return "HAS_DEFECTED"; } 
     
    public void checkConstraints(final EvolutionState state, 
     final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
    { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=2) 
     state.output.error("Incorrect number of children for node " +  
          toStringForError() + " at " + 
          individualBase); 
    } 
     
    public void eval(final EvolutionState state, 
                     final int thread, 
                     final GPData input, 
                     final ADFStack stack, 
                     final GPIndividual individual, 
                     final Problem problem) 



 

import ec.coevolve.*; 
 
import ec.app.pd_compete.*; 
 
public class MY_2ND extends GPNode { 
    public String toString() { return "MY_2ND"; } 
     
    public void checkConstraints(final EvolutionState state, 
     final int tree, 



 

public class MY_3RD extends GPNode { 
    public String toString() { return "MY_3RD"; } 
     
    public void checkConstraints(final EvolutionState state, 
     final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
    { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=3) 



 

     final int tree, 
     final GPIndividual typicalIndividual, 





 

          individualBase); 
    } 
     
    public void eval(final EvolutionState state, 
                     final int thread, 
                     final GPData input, 
                     final ADFStack stack, 
                     final GPIndividual individual, 
                     final Problem problem) 
    { 
        PD pd = (PD)problem; 
 
 char temp; 
 if (pd.whosTurn == pd.P1){ 
     temp = (pd.p2Moves.get(1)).charValue(); 
 }else if(pd.whosTurn == pd.P2){ 
     temp = (pd.p1Moves.get(1)).charValue(); 
 }else{ 
     temp = (pd.p3Moves.get(1)).charValue(); 
 } 
 
 switch(temp){ 
 case 'C': 



 

                     final int thread, 
                     final GPData input, 
                     final ADFStack stack, 
                     final GPIndividual individual, 
                     final Problem problem) 
    { 
        PD pd = (PD)problem; 
 
 char temp; 
 if (pd.whosTurn == pd.P1){ 
     temp = (pd.p2Moves.get(2)).charValue(); 
 }else if (pd.whosTurn == pd.P2){ 
     temp = (pd.p1Moves.get(2)).charValue(); 
 }else { 
     temp = (pd.p3Moves.get(3)).charValue(); 
 } 
 
 switch(temp){ 
 case 'C': 
     children[1].eval(state,thread,input,stack,individual,problem); 
     break; 
      
 case 'D': 
     children[2].eval(state,thread,input,stack,individual,problem); 
     break; 
      
 default:  // assume undefined 
     children[0].eval(state,thread,input,stack,individual,problem); 
     break; 
 } 
 
    } 
} 

 
package ec.app.pd_compete.func; 
import ec.*; 
import ec.gp.*; 
import ec.util.*; 
import ec.coevolve.*; 
 
import ec.app.pd_compete.*; 
 
public class OPP_4TH extends GPNode { 
    public String toString() { return "OPP_4TH"; } 
     
    public void checkConstraints(final EvolutionState state, 
     final int tree, 
     final GPIndividual typicalIndividual, 
     final Parameter individualBase) 
    { 
 super.checkConstraints(state,tree,typicalIndividual,individualBase); 
 if (children.length!=3) 
     state.output.error("Incorrect number of children for node " +  
          toStringForError() + " at " + 
          individualBase); 
    } 
     
    public void eval(final EvolutionState state, 
                     final int thread, 
                     final GPData input, 
                     final ADFStack stack, 
                     final GPIndividual individual, 

39 



 

                     final Problem problem) 
    { 
        PD pd = (PD)problem; 
 
 char temp; 
 if (pd.whosTurn == pd.P1){ 
     temp = (pd.p2Moves.get(3)).charValue(); 
 }else if (pd.whosTurn == pd.P2){ 
     temp = (pd.p1Moves.get(3)).charValue(); 
 }else { 
     temp = (pd.p3Moves.get(3)).charValue(); 
 } 
 
 switch(temp){ 
 case 'C': 
     children[1].eval(state,thread,input,stack,individual,problem); 
     break; 
      
 case 'D': 





 

Appendix C:  Java Source Code for the Prisoner’s Dilemma 
Problem 
 
The following Java source code is the formulation of the Prisoner’s Dilemma problem 
that was used to co-evolve solutions in ECJ. 

 
 
package ec.app.pd_compete; 
 
import ec.util.*; 
import ec.*; 
import ec.gp.*; 
import ec.gp.koza.*; 
import ec.simple.*; 
import ec.coevolve.*; 
 
import java.util.*; 
 
public class PD extends GPProblem implements GroupedProblemForm{ 
     



 

    //Define payoff values here to make it easier to adjust them if needed 
    public static final int MUTUAL_COOP = 3; 
    public static final int MUTUAL_DEFECT = 1; 
    public static final int TEMPTATION = 5; 
    public static final int SUCKER = 0; 
 
    //A variable used in the functions from the function set to determine who 
    //is P1 and who is P2 
    public int whosTurn; 
    public static final int P1 = 1; 
    public static final int P2 = 2; 
    public static final int P3 = 3; 
 
    //comparison strategies 
    private Strategy p3; 
 
    //for printing p3 info 
    private int p3score = 0; 
    private int oppCount = 0; 
    private int maxScore = 0; 
 
    public Object protoClone() throws CloneNotSupportedException 
    { 
        PD newobj = (PD) (super.protoClone()); 
        newobj.input = (PDdata)(input.protoClone()); 
        return newobj; 
    } 
    public void setup(final EvolutionState state,final Parameter base) 
    { 
        // very important, remember this 
        super.setup(state,base); 
 
        input =(PDdata)state.parameters.getInstanceForParameterEq( 
     base.push(P_DATA), null, PDdata.class); 
        input.setup(state,base.push(P_DATA)); 
 
   p3 = new GrimTrigger(); 
 
   //set up random number generator 
   rand = new MersenneTwisterFast(3252354); 
    } 
 
 
    public void preprocessPopulation( final EvolutionState state,  
          Population pop ) 
    { 
 int opps = (state.parameters).getInt( 
   new Parameter("eval.subpop.0.num-rand-ind")); 
 maxScore = opps*TEMPTATION*100; 
 
        for( int i = 0 ; i < pop.subpops.length ; i++ ) 
            for( int j = 0 ; j < pop.subpops[i].individuals.length ; j++ )        
     ((KozaFitness)(pop.subpops[i].individuals[j].fitness)). 
   setStandardizedFitness(state, (float)opps*TEMPTATION*100 ); 
 
    } 
     
    public void postprocessPopulation( final EvolutionState state,  
           Population pop ) 
    { 
        for( int i = 0 ; i < pop.subpops.length ; i++ ) 
            for( int j = 0 ; j < pop.subpops[i].individuals.length ; j++ ) 
            { 
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   state,threadnum,input,stack,((GPIndividual)ind[0]),this); 
     p1Move = input.x; 
     if(p1Move == 'C'){ 
  p1HasCooperated = true; 
     }else{ 
  p1HasDefected = true; 
  p1defectCount++; 
     }      
     whosTurn = P2; 
     //Evaluate the individual to get Player 2's move 
     ((GPIndividual)ind[1]).trees[0].child.eval( 
   state,threadnum,input,stack,((GPIndividual)ind[1]),this); 
     p2Move = input.x; 
     if(p2Move == 'C'){ 
  p2HasCooperated = true; 
     }else{ 
  p2HasDefected = true; 
  p2defectCount++; 
     } 
      
     //calculate each individual's payout based on given moves 
     result1 = getPayout(p1Move, p2Move); 
     result2 = getPayout(p2Move, p1Move); 
      
     //keep a tally for how each player is doing 
     sum1 += result1; 
     sum2 += result2; 
 
     //Update both players' move history 
     p1Moves.addFirst(new Character(p1Move)); 
     p2Moves.addFirst(new Character(p2Move)); 
 
     //--- Play TFT (or another Strategy) against subpopulation 2 ---// 





 

Appendix D: Sample ECJ parameter file 
 
This is the ECJ parameter file that was used for co-evolutionary runs with FS2  



 

pop.subpop.1.species.ind = ec.gp.GPIndividual 
 
pop.subpop.0.species.ind.numtrees = 1 
pop.subpop.0.species.ind.tree.0 = ec.gp.GPTree 
pop.subpop.0.species.ind.tree.0.tc = tc0 
pop.subpop.1.species.ind.numtrees = 1 
pop.subpop.1.species.ind.tree.0 = ec.gp.GPTree 
pop.subpop.1.species.ind.tree.0.tc = tc0 
 
pop.subpop.0.species.pipe = ec.breed.MultiBreedingPipeline 
pop.subpop.0.species.pipe.generate-max = false 
pop.subpop.0.species.pipe.num-sources = 3 
pop.subpop.0.species.pipe.source.0 = ec.gp.koza.CrossoverPipeline 
pop.subpop.0.species.pipe.source.0.prob = 0.7 
pop.subpop.0.species.pipe.source.1 = ec.breed.ReproductionPipeline 
pop.subpop.0.species.pipe.source.1.prob = 0.3 
pop.subpop.0.species.pipe.source.2 = ec.gp.koza.MutationPipeline 
pop.subpop.0.species.pipe.source.2.prob = 0.0 
 
pop.subpop.1.species.pipe = ec.breed.MultiBreedingPipeline 
pop.subpop.1.species.pipe.generate-max = false 
pop.subpop.1.species.pipe.num-sources = 3 
pop.subpop.1.species.pipe.source.0 = ec.gp.koza.CrossoverPipeline 
pop.subpop.1.species.pipe.source.0.prob = 0.7 
pop.subpop.1.species.pipe.source.1 = ec.breed.ReproductionPipeline 
pop.subpop.1.species.pipe.source.1.prob = 0.3 
pop.subpop.1.species.pipe.source.2 = ec.gp.koza.MutationPipeline 
pop.subpop.1.species.pipe.source.2.prob = 0.0 
 
breed.reproduce.source.0 = ec.parsimony.LexicographicTournamentSelection 
gp.koza.mutate.source.0 = ec.parsimony.LexicographicTournamentSelection 
gp.koza.xover.source.0 = ec.parsimony.LexicographicTournamentSelection 
gp.koza.xover.source.1 = ec.parsimony.LexicographicTournamentSelection 
select.lexicographic-tournament.size = 7 
 
#add elitism 
breed.elite.0 = 10 
breed.elite.1 = 10 
 



 

gp.fs.0.func.7.nc = nc3 
gp.fs.0.func.8 = ec.app.pd_compete.func.OPP_3RD 
gp.fs.0.func.8.nc = nc3 
gp.fs.0.func.9 = ec.app.pd_compete.func.OPP_4TH 
gp.fs.0.func.9.nc = nc3 
gp.fs.0.func.10 = ec.app.pd_compete.func.HAS_DEFECTED 
gp.fs.0.func.10.nc = nc2 
gp.fs.0.func.11 = ec.app.pd_compete.func.HAS_COOP 
gp.fs.0.func.11.nc = nc2 
 
eval.problem = ec.app.pd_compete.PD 
eval.problem.data = ec.app.pd_compete.PDdata 
 
# The following should almost *always* be the same as eval.problem.data 
# For those who are interested, it defines the data object used internally 
# inside ADF stack contexts 
eval.problem.stack.context.data = ec.app.pd_compete.PDdata
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