
Evolving Strategies for the Repeated Prisoner’s
Dilemma Game with Genetic Programming:
Studying the Effect of Varying Function Sets

By Daniel J. Scali

2006 Undergraduate Honors Thesis
Advised by Professor Sergio Alvarez

Computer Science Department, Boston College

Abstract: This thesis examines the application of genetic programming to
evolving strategies for playing an iterated version of the Prisoner’s Dilemma
game. The study examines the evolution of strategies for a single population of
players pitted against a static environment, as well as the co-evolution of
strategies for two distinct subpopulations of players competing against one
another. The results indicate that the strategies that can be evolved are strongly
influenced by the function set provided during the design process. In co-
evolutionary runs in particular, the function set shapes the environment of
opponents that an individual strategy is evaluated against. Experimental runs that
alter the makeup of the function set facilitate a discussion of how different
function sets and environments can lead to diverse strategies with varying levels
of performance.
Keywords: genetic programming, prisoner’s dilemma, game theory, function set

1. Introduction

 The Prisoner’s Dilemma has previously been used to show the validity and

effectiveness of applying genetic algorithms in a game-theoretic context. [2,5]. The

current body of research consists of various methods for representing strategies for the

Repeated Prisoner’s Dilemma. In each case, the representation scheme that is chosen

provides a framework for the evolutionary process and dictates the number of previous

moves that a given strategy can consider in the calculation of its next move. For

example, Miller [12] modeled strategies as bit-string representations of finite state

automata whereas Axelrod’s [2] more direct approach used bit strings to reflect the last

three moves of the game’s results history. Some of these studies evolve strategies based

on their performance against a fixed environment [6,12] while others have introduced the

1

 Robber 2
 Deny (Cooperate) Confess (Defect)

Deny (Cooperate) 3 , 3 10 , 1 Robber
1 Confess (Defect) 1 , 10 5 , 5

Table 2.1 The Prisoner's Dilemma with payoffs as time in jail

 Economic game theory provides tools for analyzing this situation. Table 2.1

models the above scenario as a strategic game, where Robber 1’s jail sentence is always

listed first. The strategies available for each prisoner boil down to two options: either

confess to the crime (Defect from accomplice) or deny the allegations (Cooperate with

accomplice).

 Each player in the game has one objective: to minimize his time in jail. Robber 1

has no knowledge of what Robber 2’s move will be. However, Robber 1 knows that if

Robber 2 confesses, his best response is to confess – he receives only 5 years in jail if he

confesses as opposed to 10 years if he denies the allegations. He also knows that if

Robber 2 chooses to deny, his best response is to confess – he receives only 1 year in jail

if he confesses as opposed to 3 years if he denies. No matter what Robber 2 does, it is

always in Robber 1’s best interests to confess. Thus, confession is a dominant strategy

for Robber 1 [4]. Since, a similar analysis holds true for Robber 2, the dominant strategy

equilibrium is for both robbers to confess. Curiously, even though [Confess, Confess]

is a dominant strategy equilibrium, both parties would be better off if the outcome was

[Deny, Deny].

 Player 2
 Cooperate Defect

Cooperate R = 3 , R = 3 S = 0, T = 5 Player
1 Defect T = 5 , S = 0 P = 1 , P =1

Table 2.2 The Prisoner’s Dilemma, with payoffs as points

3

 The game consists of four possible payoffs, which shall be abbreviated R, T, S and

P. R is the reward for mutual cooperation, T is the temptation to defect, S is the sucker’s

payoff, and P is the punishment for mutual defection. In order for the Prisoner’s

Dilemma to be present, two relationships must apply. First, it must be true that T > R > P

> S. This ordering preserves the proper incentive structure, as the temptation to defect

must be greater than the reward for cooperation, and so on. Second, the reward for

cooperation must be greater than the average of the temptation to defect and the sucker’s

payoff – i.e. R > .5(T+S). This removes the ability of players to take turns exploiting

each other to do better than if they played the game egoistically [1].

 A further technical analysis shows how the [Defect, Defect] dominant strategy

equilibrium is undesirable, but not easily avoidable. [Defect, Defect] is not

considered an efficient outcome. An outcome in a game is considered Pareto efficient if

no other outcome exists that makes every player at least as well off and at least one

player strictly better off. Therefore, mutual cooperation is the only Pareto efficient

solution in the Prisoner’s dilemma [6]. However even though mutual cooperation is

Pareto efficient, the [Defect, Defect] outcome is not easily avoidable because it is a

Nash equilibrium. A Nash equilibrium is an outcome of a game where neither player can

unilaterally change his move in order to improve his own payout [4]. It follows that

[Defect, Defect] is a Nash equilibrium since a player’s best choice is to defect when

he knows that his opponent will defect. Since [Defect, Defect] is the only Nash

equilibrium, it is impossible for two rational egoists who play the game only once to end

up in any other state.

5

 Although the possibility of mutual cooperation emerging in such a situation seems

and defects otherwise. The Pavlov strategy can either defect or cooperate on the first

move1.

3. Genetic Programming

 Genetic programming (GP) is an evolutionary computation technique which is

based upon the genetic algorithm (GA) developed by Holland [7]. The genetic

programming paradigm, as it will be used in the scope of this paper, was popularized by

John Koza [8].

 Genetic algorithms take advantage of the Darwinian concept of natural selection

to evolve suitable solutions to complex problems. In the typical genetic algorithm, a

possible solution to a problem – called an individual – is represented as a bit string. Each

individual is assigned a fitness, which is simply a determination of how effective a given

individual is at solving the problem. For example, when evolving a game-playing

strategy, a fitness measure might be the number of points the individual scored in the

game. To kickoff the evolutionary process, an initial population of individuals is

generated through a random process as detailed by Koza [8]. Next, the fitness of each

individual in the population is evaluated. Favoring individuals with

solutions as actual computer programs. Programming languages such as Lisp are well-

to simulate the process of Darwinian evolution and natural selection thus building

stronger populations from generation to generation. In reproduction, an individual is

selected from the population and then simply copied into the new generation. The

crossover operation, illustrated in Figure 3.2, selects two different individuals from the

population, randomly selects one node from each to be the crossover point, and then

swaps the subtrees found at the crossover nodes to create two new individuals for the new

generation. Lastly, mutation introduces random changes into the new generation. When

mutation (Figure 3.3) is applied, an individual is selected and a mutation point is selected

at random. A randomly generated subtree is inserted at the mutation point and the

mutated individual is added to the new population.

Figure 3.2 An example of the crossover operation

9

Figure 3.3 An example of the mutation operation

 The method used to select individuals for the genetic operations can vary, but is

typically based on fitness. Two popular se

lexicographic parsimony pressure, n individuals are chosen at random. As in regular

tournament selection, the individual with the best fitness is selected. However, in the

event of tie, lexicographic parsimony pressure selects the individual with a smaller tree

size. This multiobjective technique helps limit the size of the evolved trees and therefore

reigns in bloat [10].

 Selection methods can be supplemented by a technique known as elitism. The

reader may have observed that the selection methods described above are probabilistic in

nature – although they will select relatively more fit individuals, they do not necessarily

ensure that the most fit individuals pass on to the next generation. If an individual is not

playing strategies. Co-evolution allows an individual’s fitness to be calculated based on

its performance playing a game against another evolving subpopulation.

5. Methodology

The Problem
 In this version of the Repeated Prisoner’s Dilemma, the payoff structure will be

defined as [R, T, S, P] = [3, 5, 0, 1] as in Figure 1.2. Each individual plays the Prisoner’s

Dilemma game 100 times against the n opponents in its environment. For static

environments, this means playing any number of pre-determined, well-known strategies.

most recent to least recent, respectively) while OPP_LAST, OPP_2ND, OPP_3RD, and

OPP_4TH

Evolutionary Operators and Parameters
 Unless otherwise noted, runs performed during the study used the following

evolutionary operators and parameters: The evolutionary operators were crossover and

reproduction, used at the probability of .7 and .3 respectively. Tournament selection with

lexicographic parsimony pressure and a tournament size of 7 was used to select the

individuals to be operated upon.

 In runs against a static environment, a population of 500 individuals was evolved

for 100 generations. For co-evolutionary environments, both subpopulations consisted of

500 individuals and were run for up to 500 generations.

The Experiments

Table 5.1 Summary of the environments of pre-defined strategies used in genetic programming runs

Environment Name Opponents in Environment

in the current evolutionary generation. Figure 5.2 shows a high level view of the

experimental procedure. In Step 1, the function set was sequentially set equal to three

predefined function sets: FS1, FS2, and FS3. The function set FS1 consisted of eight

functions (MY_LAST, MY_2ND, MY_3RD, MY_4TH, OPP_LAST, OPP_2ND, OPP_3RD,

and OPP_4TH) that could check the last four moves of each player in the history. After

this, FS2 was constructed by adding the HAS_COOP and HAS_DEFECTED functions to

FS1. The evolutionary process was again set in motion in all environments. Finally, the

function set was reduced to FS3, a function set consisting of just two functions:

MY_LAST and OPP_LAST.

Procedure:
1. Set F = FS1 = {MY_LAST, MY_2ND, MY_3RD, MY_4TH, OPP_LAST,

OPP_2ND, OPP_3RD, OPP_4TH}
2. Run against all environments
3. Set F = FS2 = {MY_LAST, MY_2ND, MY_3RD, MY_4TH, OPP_LAST,

OPP_2ND, OPP_3RD, OPP_4TH, HAS_COOP, HAS_DEFECTED }
4. Run against all environments
5. Set F = FS3 = {MY_LAST, OPP_LAST }
6. Run against all environments

Figure 5.2 The experimental procedure and various function sets

6. Results and Discussion

 Static Environments
 A summary of fixed (i.e. static) environment results can be found in Table 6.1.

One of the most interesting static environments was Environment 3, which consisted of

the opponents

5.

17

Evolved Strategy:
(OPP_LAST D (MY_LAST D C D) (OPP_2ND D C (MY_LAST C C D)))

Evolved Strategy:

Table 6.1 Summary of results for genetic programming runs against environments of pre-defined opponents

 Function Set 1 (FS1) Function Set 2 (FS2) Function Set 3 (FS3)
Environment

 Additionally, the results show that changes to the function set can limit this

diagnostic ability and thus produce less-effective strategies. This became apparent when

the function set FS3 was used to evolve strategies in the same environment (Environment

3). The results of this run are summarized in Figure 6.2.

Evolved Strategy:

strategy. In fact at one point (Generation 48), once the population was dominated by

Grim Trigger strategies, the strategy All C

however, the data shows that the Grim Trigger strategy performed comparably to

Tit-for-Tat and the best-of-generation strategy.

 The fact that Grim Trigger emerged from co-evolution speaks to the ability of

genetic programming to evolve human-competitive solutions to game theoretic problems

like the Repeated Prisone

 In co-evolution, the pre-defined opponents were replaced by a strategy’s peers in

the evolving population. Grim Trigger, a strategy regarded as a good general

strategy in previous work, emerged as the most effective strategy. Grim Trigger was

shown to perform similarly to Tit-for-Tat in this environment. The results suggest

that changing the function set has an increased effect in co-evolution since the changes

alter the environment of opponents.

 The application of genetic programming to evolutionary game theory discussed in

this paper suggests some interesting directions for future research. From a game-

theoretic perspective, the results of the study might be analyzed further. Are strategies

that emerge during evolution well-generalized strategies, evolutionary stable, or both?

This study also points out that the results of genetic programming runs are sensitive to

changes made to the function set. Additional research might build on these findings to

provide a more complete understanding of the general characteristics of functions that,

when added, tend to improve results.

8. Acknowledgements
 Thank you to my advisor Professor Sergio

class GrimTrigger extends Strategy
{
 public char getMove()
 {
 if(hasDefected){
 return 'D';
 }else{
 return 'C';
 }
 }
}

class Pavlov extends Strategy
{
 public char getMove()
 {
 if(moveNumber == 0) return 'C';

 if(oppHistory[moveNumber-1] == myHistory[moveNumber-1]){
 return 'C';
 }else{
 return 'D';
 }
 }
}

class TitForTat extends Strategy
{
 public char getMove()
 {
 if(moveNumber == 0) return 'C';

 if(oppHistory[moveNumber-1] == 'C'){
 return 'C';
 }else{
 return 'D';
 }
 }
}

class CBTFT extends Strategy
{
 public char getMove()
 {
 if(moveNumber == 0) return 'C';

 if(oppHistory[moveNumber-1] == 'C'){
 return 'D';
 }else{
 return 'C';
 }
 }
}

class DBTFT extends Strategy
{
 public char getMove()
 {
 if(moveNumber == 0) return 'D';

 if(oppHistory[moveNumber-1] == 'C'){
 return 'D';

29

 }else{
 return 'C';
 }
 }
}

class DPC extends Strategy
{
 public char getMove()
 {
 if(hasCooperated){
 return 'C';
 }else{
 return 'D';
 }
 }
}

class DTFT extends Strategy
{
 public char getMove()
 {
 if(moveNumber == 0) return 'D';

 if(oppHistory[moveNumber-1] == 'C'){
 return 'C';
 }else{
 return 'D';
 }
 }
}

30

Appendix B: Java Source Code for Functions and Terminals

For brevity, the source code for the functions and terminals used in static environment
experiments is not included. The source code shown here was used for co-evolution. It
contains modifications to the classes used in the static environments which facilitate co-
evolution and add the ability to specify a pre-defined strate

 final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=0)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state,
 final int thread,
 final GPData input,
 final ADFStack stack,
 final GPIndividual individual,
 final Problem problem)
 {
 PDdata data = ((PDdata)(input));
 data.x = 'D';
 }
}

package ec.app.pd_compete.func;
import ec.*;
import ec.gp.*;
import ec.util.*;

import ec.app.pd_compete.*;

public class HAS_COOP extends GPNode {
 public String toString() { return "HAS_COOP"; }

 public void checkConstraints(final EvolutionState state,
 final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=2)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state,
 final int thread,
 final GPData input,
 final ADFStack stack,
 final GPIndividual individual,
 final Problem problem)
 {
 PD pd = (PD)problem;

 boolean oppHasCooperated;
 if (pd.whosTurn == pd.P1){
 oppHasCooperated = pd.p2HasCooperated;
 }else if(pd.whosTurn == pd.P2){
 oppHasCooperated = pd.p1HasCooperated;
 }else{
 oppHasCooperated = pd.p3HasCooperated;
 }

32

 if(oppHasCooperated){
 children[0].eval(state,thread,input,stack,individual,problem);
 }else{
 children[1].eval(state,thread,input,stack,individual,problem);
 }

 }
}

package ec.app.pd_compete.func;
import ec.*;
import ec.gp.*;
import ec.util.*;

import ec.app.pd_compete.*;

public class HAS_DEFECTED extends GPNode {
 public String toString() { return "HAS_DEFECTED"; }

 public void checkConstraints(final EvolutionState state,
 final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=2)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state,
 final int thread,
 final GPData input,
 final ADFStack stack,
 final GPIndividual individual,
 final Problem problem)

import ec.coevolve.*;

import ec.app.pd_compete.*;

public class MY_2ND extends GPNode {
 public String toString() { return "MY_2ND"; }

 public void checkConstraints(final EvolutionState state,
 final int tree,

public class MY_3RD extends GPNode {
 public String toString() { return "MY_3RD"; }

 public void checkConstraints(final EvolutionState state,
 final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=3)

 final int tree,
 final GPIndividual typicalIndividual,

 individualBase);
 }

 public void eval(final EvolutionState state,
 final int thread,
 final GPData input,
 final ADFStack stack,
 final GPIndividual individual,
 final Problem problem)
 {
 PD pd = (PD)problem;

 char temp;
 if (pd.whosTurn == pd.P1){
 temp = (pd.p2Moves.get(1)).charValue();
 }else if(pd.whosTurn == pd.P2){
 temp = (pd.p1Moves.get(1)).charValue();
 }else{
 temp = (pd.p3Moves.get(1)).charValue();
 }

 switch(temp){
 case 'C':

 final int thread,
 final GPData input,
 final ADFStack stack,
 final GPIndividual individual,
 final Problem problem)
 {
 PD pd = (PD)problem;

 char temp;
 if (pd.whosTurn == pd.P1){
 temp = (pd.p2Moves.get(2)).charValue();
 }else if (pd.whosTurn == pd.P2){
 temp = (pd.p1Moves.get(2)).charValue();
 }else {
 temp = (pd.p3Moves.get(3)).charValue();
 }

 switch(temp){
 case 'C':
 children[1].eval(state,thread,input,stack,individual,problem);
 break;

 case 'D':
 children[2].eval(state,thread,input,stack,individual,problem);
 break;

 default: // assume undefined
 children[0].eval(state,thread,input,stack,individual,problem);
 break;
 }

 }
}

package ec.app.pd_compete.func;
import ec.*;
import ec.gp.*;
import ec.util.*;
import ec.coevolve.*;

import ec.app.pd_compete.*;

public class OPP_4TH extends GPNode {
 public String toString() { return "OPP_4TH"; }

 public void checkConstraints(final EvolutionState state,
 final int tree,
 final GPIndividual typicalIndividual,
 final Parameter individualBase)
 {
 super.checkConstraints(state,tree,typicalIndividual,individualBase);
 if (children.length!=3)
 state.output.error("Incorrect number of children for node " +
 toStringForError() + " at " +
 individualBase);
 }

 public void eval(final EvolutionState state,
 final int thread,
 final GPData input,
 final ADFStack stack,
 final GPIndividual individual,

39

 final Problem problem)
 {
 PD pd = (PD)problem;

 char temp;
 if (pd.whosTurn == pd.P1){
 temp = (pd.p2Moves.get(3)).charValue();
 }else if (pd.whosTurn == pd.P2){
 temp = (pd.p1Moves.get(3)).charValue();
 }else {
 temp = (pd.p3Moves.get(3)).charValue();
 }

 switch(temp){
 case 'C':
 children[1].eval(state,thread,input,stack,individual,problem);
 break;

 case 'D':

Appendix C: Java Source Code for the Prisoner’s Dilemma
Problem

The following Java source code is the formulation of the Prisoner’s Dilemma problem
that was used to co-evolve solutions in ECJ.

package ec.app.pd_compete;

import ec.util.*;
import ec.*;
import ec.gp.*;
import ec.gp.koza.*;
import ec.simple.*;
import ec.coevolve.*;

import java.util.*;

public class PD extends GPProblem implements GroupedProblemForm{

 //Define payoff values here to make it easier to adjust them if needed
 public static final int MUTUAL_COOP = 3;
 public static final int MUTUAL_DEFECT = 1;
 public static final int TEMPTATION = 5;
 public static final int SUCKER = 0;

 //A variable used in the functions from the function set to determine who
 //is P1 and who is P2
 public int whosTurn;
 public static final int P1 = 1;
 public static final int P2 = 2;
 public static final int P3 = 3;

 //comparison strategies
 private Strategy p3;

 //for printing p3 info
 private int p3score = 0;
 private int oppCount = 0;
 private int maxScore = 0;

 public Object protoClone() throws CloneNotSupportedException
 {
 PD newobj = (PD) (super.protoClone());
 newobj.input = (PDdata)(input.protoClone());
 return newobj;
 }
 public void setup(final EvolutionState state,final Parameter base)
 {
 // very important, remember this
 super.setup(state,base);

 input =(PDdata)state.parameters.getInstanceForParameterEq(
 base.push(P_DATA), null, PDdata.class);
 input.setup(state,base.push(P_DATA));

 p3 = new GrimTrigger();

 //set up random number generator
 rand = new MersenneTwisterFast(3252354);
 }

 public void preprocessPopulation(final EvolutionState state,
 Population pop)
 {
 int opps = (state.parameters).getInt(
 new Parameter("eval.subpop.0.num-rand-ind"));
 maxScore = opps*TEMPTATION*100;

 for(int i = 0 ; i < pop.subpops.length ; i++)
 for(int j = 0 ; j < pop.subpops[i].individuals.length ; j++)
 ((KozaFitness)(pop.subpops[i].individuals[j].fitness)).
 setStandardizedFitness(state, (float)opps*TEMPTATION*100);

 }

 public void postprocessPopulation(final EvolutionState state,
 Population pop)
 {
 for(int i = 0 ; i < pop.subpops.length ; i++)
 for(int j = 0 ; j < pop.subpops[i].individuals.length ; j++)
 {

43

 state,threadnum,input,stack,((GPIndividual)ind[0]),this);
 p1Move = input.x;
 if(p1Move == 'C'){
 p1HasCooperated = true;
 }else{
 p1HasDefected = true;
 p1defectCount++;
 }
 whosTurn = P2;
 //Evaluate the individual to get Player 2's move
 ((GPIndividual)ind[1]).trees[0].child.eval(
 state,threadnum,input,stack,((GPIndividual)ind[1]),this);
 p2Move = input.x;
 if(p2Move == 'C'){
 p2HasCooperated = true;
 }else{
 p2HasDefected = true;
 p2defectCount++;
 }

 //calculate each individual's payout based on given moves
 result1 = getPayout(p1Move, p2Move);
 result2 = getPayout(p2Move, p1Move);

 //keep a tally for how each player is doing
 sum1 += result1;
 sum2 += result2;

 //Update both players' move history
 p1Moves.addFirst(new Character(p1Move));
 p2Moves.addFirst(new Character(p2Move));

 //--- Play TFT (or another Strategy) against subpopulation 2 ---//

Appendix D: Sample ECJ parameter file

This is the ECJ parameter file that was used for co-evolutionary runs with FS2

pop.subpop.1.species.ind = ec.gp.GPIndividual

pop.subpop.0.species.ind.numtrees = 1
pop.subpop.0.species.ind.tree.0 = ec.gp.GPTree
pop.subpop.0.species.ind.tree.0.tc = tc0
pop.subpop.1.species.ind.numtrees = 1
pop.subpop.1.species.ind.tree.0 = ec.gp.GPTree
pop.subpop.1.species.ind.tree.0.tc = tc0

pop.subpop.0.species.pipe = ec.breed.MultiBreedingPipeline
pop.subpop.0.species.pipe.generate-max = false
pop.subpop.0.species.pipe.num-sources = 3
pop.subpop.0.species.pipe.source.0 = ec.gp.koza.CrossoverPipeline
pop.subpop.0.species.pipe.source.0.prob = 0.7
pop.subpop.0.species.pipe.source.1 = ec.breed.ReproductionPipeline
pop.subpop.0.species.pipe.source.1.prob = 0.3
pop.subpop.0.species.pipe.source.2 = ec.gp.koza.MutationPipeline
pop.subpop.0.species.pipe.source.2.prob = 0.0

pop.subpop.1.species.pipe = ec.breed.MultiBreedingPipeline
pop.subpop.1.species.pipe.generate-max = false
pop.subpop.1.species.pipe.num-sources = 3
pop.subpop.1.species.pipe.source.0 = ec.gp.koza.CrossoverPipeline
pop.subpop.1.species.pipe.source.0.prob = 0.7
pop.subpop.1.species.pipe.source.1 = ec.breed.ReproductionPipeline
pop.subpop.1.species.pipe.source.1.prob = 0.3
pop.subpop.1.species.pipe.source.2 = ec.gp.koza.MutationPipeline
pop.subpop.1.species.pipe.source.2.prob = 0.0

breed.reproduce.source.0 = ec.parsimony.LexicographicTournamentSelection
gp.koza.mutate.source.0 = ec.parsimony.LexicographicTournamentSelection
gp.koza.xover.source.0 = ec.parsimony.LexicographicTournamentSelection
gp.koza.xover.source.1 = ec.parsimony.LexicographicTournamentSelection
select.lexicographic-tournament.size = 7

#add elitism
breed.elite.0 = 10
breed.elite.1 = 10

gp.fs.0.func.7.nc = nc3
gp.fs.0.func.8 = ec.app.pd_compete.func.OPP_3RD
gp.fs.0.func.8.nc = nc3
gp.fs.0.func.9 = ec.app.pd_compete.func.OPP_4TH
gp.fs.0.func.9.nc = nc3
gp.fs.0.func.10 = ec.app.pd_compete.func.HAS_DEFECTED
gp.fs.0.func.10.nc = nc2
gp.fs.0.func.11 = ec.app.pd_compete.func.HAS_COOP
gp.fs.0.func.11.nc = nc2

eval.problem = ec.app.pd_compete.PD
eval.problem.data = ec.app.pd_compete.PDdata

The following should almost *always* be the same as eval.problem.data
For those who are interested, it defines the data object used internally
inside ADF stack contexts
eval.problem.stack.context.data = ec.app.pd_compete.PDdata

49

References

[1] Axelrod, Robert. The Evolution of Cooperation. New York: Basic Books, 1984.
[2] Axelrod, Robert. The Complexity of Cooperation. Princeton: Princeton University

Press, 1997.
[3] Dacey, Raymond and Norman Pendegraft. “The Optimality of Tit-For-Tat.”

International Interactions 15, no. 1 (1988): 45-64.
[4] Dixit, Avinash and Susan Skeath. Games of Strategy. 2nd ed. New York: W.W.

Norton, 2004.

	1. Introduction
	2. The Prisoner’s Dilemma
	3. Genetic Programming
	4. ECJ
	5. Methodology
	The Problem
	The Function and Terminal Sets
	Fitness
	Evolutionary Operators and Parameters
	The Experiments
	6. Results and Discussion
	 Static Environments
	Co-evolutionary Environments

	7. Conclusion
	8. Acknowledgements
	 Appendix C: Java Source Code for the Prisoner’s Dilemma Problem
	 Appendix D: Sample ECJ parameter file

