

have the potential to be performed on extremely large numbers as mathematical

algorithms that run at speeds linear to the number of digits.

Now that we have our public and private keys we are ready to encrypt our private

data using the equation:

C = Me (mod n)

where C is the encrypted data or ciphertext, e is our public key, n is our modulus, and M

is a plaintext block such that the binary value of M is less than n. To recover our

plaintext message from the ciphertext we simply repeat the above equation using the

private key:

M = Cd (mod n)

While it is not immediately clear that these two operations are inverses of each

other, this can be seen by expanding the equation:

M = Cd (mod n) = (Me)d (mod n) = Med mod n

applying the following corollary Euler's theorem:

Given two prime numbers, p and q, and two integers, n and
m, such that n = pq and 0 < m < n, and arbitrary integer k,

the following relationship holds:

m k n 1 m k p 1

If Alice and Bob want to have a private conversation they each generate their own

public and private keys and trade public key sets (PubKBob = {eBob, nBob}). If Bob wishes

to send a message to Alice he encrypts his plaintext with the public key of Alice:

CBob

Kocher Timing Attack

The implementation of a timing attack on the RSA cryptographic system exploits

variations in the computation time of the decryption of the ciphertext. We start by

analyzing a simple modular exponentiation for decryption M = Cd(mod n) where C has

been obtained by eavesdropping on an ongoing conversation and the public key (e, n) is

public knowledge. The following algorithm is used for the decryption where w is the

number of bits, and the most significant bit is defined as '0':

Let s0 = 1,
For k = 0 upto w-1:
 If (bit k of d) is 1 then
 Let Mk = (sk * C) mod n.
 Else
 Let Mk = sk .
 Let sk+1 = Mk

2 mod n.
EndFor.
Return (Mw-1).

Figure 1

Since computer operations are not always performed in constant speed we need to

assemble a group, or block, of ciphertexts to develop reliable results. Using this block

(the size of which will be discuss later in this paper) we now begin the timing portion of

the attack, first computing the time needed to decrypt the message with the actual private

exponent for each ciphertext (obtained by sending the ciphertext and modulus to the

server) T = e + i 0
w 1 t i , where ti corresponds to the amount of time needed to perform

the decryption on bit i of the ciphertext and e represents the overhead within the

decryption. At this point it is important to note that although the decryption algorithm

above begins with k=0, the '0' is actually referring the most significant bit of the private

key. We gather a block of ciphertexts and calculate the time to decrypt our private guess

with the most significant bit equal to a 0 (T0) and a 1 (T1) for a single iteration of the

decryption loop. By subtracting the guesses T0 and T1 from T we are left with the time

that it takes to compute the guessed bits. Taking in to account the extra time needed by

the algorithm to “decrypt” a bit that is set, as explained above, by simply computing the

variances and subsequently comparing them we are now able to predict the first bit of the

private key.

Notice that when bit k of d is set we do modular multiplication whereas when is

not set there is a simple assignment. The time needed to perform the modular

multiplication as well as the squaring is significantly more than the simple assignment

and squaring and it is on this difference that we will focus our attack.

In theory, when comparing the variances of the two guesses the correct guess

would have a smaller variance from the actual time expected. With the first bit guessed

we can now proceed to the second and repeat the same procedure. As more bits are

correctly guessed the timing period will increase, which in turn creates more stable

results and higher percentage of correct guesses. On the other hand an incorrect guess

would result in larger variance numbers indicating that you need to re-guess the previous

bit.

After proving that the algorithm is exploitable the next step is to gather a block of

ciphertexts, either by eavesdropping on an ongoing conversation or generating them

using the previously obtained public exponent and modulus for the conversation. The

experimental results, obtained by analysis of RSAREF Modular Multiplication and

After many hours spent searching the internet for a package with the appropriate

methods for the timing attack, and a few that failed to compile, we finally found

MIRACL or the Multiprecision Integer and Rational Arithmetic C/C++ Library.[10] The

package was largely self-explanatory and came with adequate documentation. The

parameters for the functions were generally in the format of source, source, destination.

The largest adjustment that I had to accommodate for in my code was the fact that the

division algorithm returned the remainder of the division in the first parameter. This

specification required a few extra steps to be taken to insure the data of the variable in the

first argument remained unchanged.

After familiarizing myself with the new package I translated the Java code into C

and looked for a appropriate method of timing. Following testing both inherent C timing

methods and code developed by Bryant and O'Hallaron [4] we decided to go with the

latter, as it offered clock cycle counting.

My code first generates an RSA key set with 256-bit encryption and a small

public key (in the interest of minimizing the time to encrypt of the ciphertexts). It then

enters a loop, which generates a number of ciphertexts (with a randomly generated

number used as the plaintext) specified by the user via the command line and attempts to

recover the most significant bit of the private key using this block of ciphertexts. The

 gener a rand-bits tatedmpl 1 ithlf w using t attempts to

The first test was done attempting to determine whether or not the variance of a

guess of '1' was small enough to suggest a correct guess, but after having no success I

reverted back to the guessing of both a '0' and a '1' as described in the Kocher paper.

Once again the 250 ciphertexts did not yield any promising results, so I modified the

program to allow for a user defined number of ciphertexts and designed a script to launch

the timing attack with ciphertext blocks of size 250, 500, 1000, 2500, and 5000.

The first few runs of the script returned the most promising results yet, the bit was

guessed correctly at a percentage that was expected. However, there seemed to be

random runs where the script performed well below what was expected. With

percentages in the area of 10-15% success rate, this was initially mildly disappointing but

more thought showed the low rates to be more of a surprise. When mounting the attack, if

it was not working properly one would expect to see the correct guess rate to be

somewhere in the 50% range as we had been seeing before. If the program were truly just

guessing which bit was correct it would essentially be a coin flip. The fact that we were

receiving consistently wrong bit identifications would imply that the attack is still

working, only in the reverse. It was getting late so I decided to troubleshoot the guess

reversal the next day.

Eager to investigate the strange, but promising results I started early the next

running the code once without modification attempting to get a better idea of what was

happening in the erroneous runs. However, when the data returned all signs of promise

had vanished, as all of the results came back in 50% range. To this day I have been

unable to produce favorable results, and can only assume that the load on the processor

on that day was balanced to the point where the timing portion of the attack was running

modifying components to the RSA algorithm. In experimental results the Belgian group

found that when RSA is allowed to operate as it should the extra reduction is only

performed only 17% of the time. They were able to increase this probability to numbers

as high as 50% by fixing the modulus and one of the factors, however these modifications

would not be performed in practice and thus compromises the effectiveness of the

attack.[5]

With this in mind the group reworked their attack to concentrate on the squaring

operation that is performed figure 2

do the samples have to be) is also solved, as we are looking at a comparison between a

guess of '1' or a guess of '0' and the actual time. Since we now have a predetermined point

of reference we no longer have to calibrate our difference margin.

While very excited about the new and seemingly more successful timing attack as

proposed by Dhem, Koeune, Quisquater and Willems, we realized that the issue of

accurate timing results had not gone away. The paper by the Belgian scientists suggests

that the attack is based on a variation in timing of 422 clock cycles out of 7,400,000, so it

was clear to us that the accuracy of measurements was still crucial to the success of the

attack. [5] So we decided that prior to any attempts at implementing the attack we should

first secure accurate timing results.

Timing Trials and Tribulations

The first timing trials were performed using the Bryant and O'Halloran [4] code to

time a multiplication, and a squaring using both the Lenstra LIP package [9] and the Scott

MIRACL package.[10] The numbers that were used were randomly generated, with a

ceiling of 2128-1, using the random number generators supplied by the respective

For example to compute the continued fraction of
4
11

we first invert the fraction:

0
1
11
4

then reduce the fraction in the denominator:

0
1

2
3
4

we repeat by inverting the fraction in the denominator:

0
1

2
1
4
3

and finally reduce the denominator to obtain the simple continued fraction:

0
1

2
1

1
1
3

The continued fraction expansion for
4
11

is < 0 ,2 ,1 ,3 >.

It can be shown that the fraction can be reconstructed from q0 using the following

method:

n0 = q0, d0 = 1,
n1 = q0q1 + 1, d1 = q1,
ni = qini-2, di = qidi-1 + di-2 for i = 2,3,...,m

Figure 6 [8]

performance of the attack on numbers in that neighborhood. I then ran this script to test

encryption sizes of 256, 512 and 1024-bits. The following graphs represent the results of

the tests on 512-bit and 1024-bit encryption. In order to determine the percentages the

script was run twice, thus percentages represent number of correct exposures over 1000

exposure attempts.

Figure 8

As is shown by the graph above, with 512-bit encryption, by simply allowing the

to run until failure I was able to increase the boundary of insecure private keys by 263 and

still obtain a one hundred percent success rate. While at first this may seem like an

incredible amount of added vulnerability, when taking as a percentage of the size of the

encryption rate the increase is actually extremely small.

Figure 9

Figure 9 shows that when the rate of encryption is doubled so is the exponent for

additional exposure. Taking in to account the both the rate of encryption and size of the

additional exposure are exponents in the equation 2z, the actual expansion of the

boundary decreases when taken as a percentage of the encryption rate. In comparing the

three graphs (including the 256-bit encryption test not shown) I found that the exponent

used to test the boundary approximately doubled each time and as you can see above the

delay into the calculation of the decryption. This method my seem to be ideal because it

does not result in any additional calculation, but it turns out that this only make the attack

harder to perform. The introduction of random timings is essentially the same as the

inconsistencies in computer timing, and theoretically can be averaged out by increasing

the number of samples used.

Kocher's paper suggests a clever prevention method commonly referred to as

blinding. This method calls for the calculation of an additional set of randomly generated

numbers <vi, vf>.[2] For the RSA algorithm Kocher suggests that vf is chosen to be

relatively prime to the modulus n, and vi is computed by the following equation:

v i

consistently performed the Montgomery algorithm should run in 'constant' time,

completely undermining the attempt to exploit it.

The continued fractions attack is easily prevented by choosing a sufficiently large

private key. As there are complementary attacks that rely on the choice of a low public

exponent it is considered best practice to choose the exponent with the intention of

keeping both keys relatively large. Low private exponents are generally chosen in an

effort to reduce the time of decryption, but with this vulnerability and the small increase

With regard to the mathematical attacks I would like to work on expanding the

boundary of the continued fractions, small private exponent attack, as well as

implementing an attack on a low public exponent. To expand the boundary of the

continued fractions attack I would perform testing on the improved denominator as

suggested by Wiener. [8] Boneh suggested a number of attacks on a small public

exponents, all of which rely on the LLL lattice algorithm. After gaining a solid

understanding of the math behind this algorithm I would like to implement one of these

attacks. My ideal goal would be to see how far I could advance both the small private and

small public key vulnerabilities, in order to be able to suggest an optimal range for key

generation.

References

[1] W. Stallings. Cryptography and Network Security: Principles and Practices. New
Jersey: Prentice Hall 2003

[2] P. C. Kocher. Timing Attacks on Implementations of DiffieHellman, RSA, DSS and
Other Systems
<http://www.cyptography.com/resources/whitepapers/TimingAttacks.pdf>

[3] “Java SDK 1.4.2 API” <http://java.sun.com/j2se/1.4.2/docs/api/>

[4] Bryant and O'Halloran. <http://csapp.cs.cmu.edu/public/ics/code/perf/clock.c>

[5] Dhem, Koeune, Leroux, Mestre, Quisquater, and Willems. A Practical
Implementation of the Timing Attack.
<http://www.cs.jhu.edu/~fabian/courses/CS600.624/Timing-full.pdf>

[6] D. Boneh. Twenty Years of Attacks on the RSA Cryptosystem.
<http://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf>

[7] Eric W. Weisstein. "Continued Fraction." From MathWorld--A Wolfram Web
Resource. <http://mathworld.wolfram.com/ContinuedFraction.html>

[8] Michael J. Wiener. Cryptanalysis of Short RSA Secret Exponents. IEEE Transactions
on Information Theory, vol. 36. no. 3, 1990, pp.553-558.
<http://www3.sympatico.ca/wienerfamily/Michael/MicaelPapers/ShortSecretExp
onents.pdf>

[9] Arjen Lenstra. LIP: Large Integer Package. Bellcore
<http://www.enseignement.polytechnique.fr/profs/
informatique/Philippe.Chassignet/97-98/BIGNUMS/lipdoc.ps>

[10] M. Scott. MIRACL: Multiprecision Integer and Rational Arithmetic C/C++ Library.
Shamus Software Ltd. <http://indigo.ie/~mscott/>

