

Computation of Potentially Visible Set for Occluded

Three-Dimensional Environments

Derek Carr
Advisor: Prof. William Ames

Boston College
Computer Science Department

May 2004

Page 1

Abstract

This thesis deals with the problem of visibility culling in interactive three-

dimensional environments. Included in this thesis is a discussion surrounding the issues

involved in both constructing and rendering three-dimensional environments.

A renderer must sort the objects in a three-dimensional scene in order to draw the

scene correctly. The Binary Space Partitioning (BSP) algorithm can sort objects in three-

dimensional space using a tree based data structure. This thesis introduces the BSP

algorithm in its original context before discussing its other uses in three-dimensional

Page 3

Spatial Sorting

A naïve approach to rendering a scene is to iterate a vector of objects and draw

each object in turn. Almost any environment drawn using this approach will result in an

incorrect rendering. Imagine two disjoint objects along the same line of sight from the

location of the eye. If the renderer draws the object furthest from the eye last, the object

closest to the eye will not appear correct. The object that is furthest from the eye will

appear to overlap the closer object. This basic example illustrates the need for sorting

objects. A renderer must sort the objects in a three-dimensional scene in order to draw

the scene correctly.

Using a depth buffer is the easiest approach to solving basic spatial sorting

problems, but it is not optimal. The depth buffer approach is only applicable for those

scenes that do not contain transparent objects; therefore, it is necessary for the renderer to

Page 4

O(n log n). The renderer can achieve this level of performance by using the Binary

Space Partitioning (BSP) data structure.

Binary Space Partitioning

 The BSP data structure provides a computational representation of space that

simultaneously acts as a search structure and a representation of geometry. The

efficiency gain reaped by using the BSP algorithm occurs because it provides a type of

“spatial sorting”. The BSP tree is an extension of the basic binary search tree to

dimensions greater than one. A BSP solves a number of problems in computational

geometry by exploiting two simple properties that occur when a plane separates two or

more objects. First, an object on one side of a plane cannot intersect any object on the

opposite side. Second, given a viewpoint location, all objects on the same side as the eye

can have their images rendered on top of the images of all objects on the opposite side.

This second property allows the BSP tree to implement the Painter’s Algorithm.

 The creation of a BSP tree is a time intensive process that a BSP compiler

produces once offline for a rigid environment. By pre-computing the BSP tree, an

animation or interactive application can reap the savings as substantially faster algorithms

for computing visibility orderings. Before diving into the algorithm that produces a BSP

tree, it is necessary to enumerate the group of prerequisite functions.

 The BSP compiler takes a set of polygons as input and recursively divides that set

into two subsets until each subset contains a convex grouping of polygons. In order for a

set of polygons to be convex, each polygon in the set must be in front of every other

polygon in the set.

Page 5

Figure 1. A convex vs. non-convex set of polygons.

The three following functions presented in pseudo-code test if a set of polygons is

convex. All references to an epsilon are necessary in order to provide numerical stability

when working with floating point precision representations of vertices.

FUNCTION classifyPoint(Plane plane, Vector3

Page 6

all polygons that are in front of the partition plane as input for creating the nodes front

child. The process works the same for the back child. The compiler splits those

Page 8

The following figures illustrate how the tree construction process works on a

sample scene. The sample will work in two dimensions, but the same process extends to

three dimensions. In two dimensions, the partitioning structure is the line. In three

dimensions, the partitioning structure is the plane. For these images, each line segment

represents a polygon whose surface normal points in the direction of the arrow.

Figure 2. A simple scene.

 Let us assume that the selectPartitionPlane function selected polygon G as the

partitioning structure. The compiler classified all polygons against G. Since polygon D

spanned the partition plane, the compiler split it into two segments. Polygons G, F, E,

and D’ are in front of G. Polygons A, B, C, D’’, H, I, J are behind G.

Figure 3. G is chosen as a partition.

Page 9

 The compiler continues with the set of polygons behind G. It selected polygon I

as a partitioning structure.

Figure 4. I selected as a partition.

 The process continues until the partition is completed.

Figure 5. The final BSP tree.

The resulting data structure is a tree that has three leaves. Each leaf represents a

convex grouping of polygons. Every polygon is in front of all other polygons in its leaf.

Internal nodes store the partitioning plane, and the leaf nodes store the actual polygons.

Page 10

Figure 6. A BSP representation of the scene.

When a renderer has a BSP representation of the scene, the renderer can draw the

scene in a back-to-front ordering that implements the Painter’s Algorithm without having

to perform the brute force spatial sorting algorithm discussed earlier. The rendering

method takes advantage of the fact that given a viewpoint location, all objects on the

same side as the eye can have their images rendered on top of the images of all objects on

the opposite side.

The following is a rendering function that illustrates this concept.

FUNCTION renderTree (BspNode node, Point position)
 if (isLeaf (node))
 renderPolygons (node.polygons);
 else
 value = classifyPoint (node.plane, position);
 if (value == INFRONT || value == COINCIDENT)
 renderTree (node.backChild, position);
 renderTree (node.frontChild, position);
 else
 renderTree (node.frontChild, position);
 renderTree (node.backChild, position);
 return

Page 12

Users build CSG models by performing set operations and linear transformations

on basic primitives such as spheres, cones, cubes, etc. A tree is used to represent the

model. The leaves contain the basic primitives, while the nodes store operators or linear

transformations. Union, subtraction, difference, and intersection are all valid operations.

This thesis will focus on union and subtraction operations.

Figure 7. Sample of adding and subtraction two basic shapes.

 Let us refer to A and B as brushes. In the example above

Page 14

 Polygon pos, neg, retFront, retBack;
 splitPolygon (polygon, node.partitionPlane, pos, neg);
 if (node.frontChild)

Page 15

Potentially Visible Set (PVS) is the set of polygons that might be visible from a given

location and field of view.

 In their paper, Portals and Mirrors, Luebke and Georges describe a method of

rendering occluded three-dimensional environments using a technique known as portal

rendering. Portal rendering is an intuitive algorithm for rendering large architectural

models that are closed, and exhibit a large amount of occlusion.

 A portal- rendering engine works with sectors connected by portals. A sector is a

polyhedral volume of space. It is useful to think of a sector as a room in a building. Each

sector will contain a list of polygons. Most of the polygons will represent visible surfaces

in the environment, such as walls, but a few polygons, called portals, will represent

invisible regions of space that connect two adjacent sectors. Open doors and windows

are good representatives of portal regions. Sectors can only “see” other sectors through

the portals that connect them.

 Representing architectural models using this data structure has some immediate

benefits. All data related to a room is restricted to a specific part of the dataset, i.e. an

individual sector. It is only possible to move from one sector to another by passing

through a portal. Large environments, made up of many sectors, do not need to be

completely in memory at one time. Advanced caching strategies are possible since not

all sectors will be relevant, or visible, at any one time. A renderer only needs to render

those sectors that are visible through a series of portals.

Page 16

Figure 8.
View from a bedroom. White Boxes
represent portals within the sector.

Doorways and mirrors are portals [1].

Figure 9.
This is an overhead view of the house
containing the room in Figure 8. View
frustum is clipped against each portal in

order to calculate what sectors are visible
[1].

 We proceed to describe an algorithm that automatically divides an environment

into a network of sectors and portals. It takes a BSP tree as input. This process is

completed once for a given input. The following code is presented in C++ format, and is

extracted from the implementation program that goes along with this paper.

void CSectorMgr::create(CBspNode* pBspNode)
{
 pBspRoot = pBspNode;
 createSectors();
 CPortalList* pPortalList = createPortalList();

addPortalsToSectors(pPortalList);
 pPortalList-

Page 17

void CSectorMgr::createSectors()
{
 unsigned int x;
 numSector = pBspRoot->getNumLeaves();
 pSector = new CSector[numSector];
 for (x = 0; x < numSector; x++)
 pSector[x].addPolygon(pBspRoot->getLeafNode(x)-
>getPolygons());
}

 Potential portals can only exist along the partition planes of the BSP data

structure. We proceed by enumerating a list of all potential portals by creating a large

portal polygon along each partition plane, and clipping that portal against all partitions in

the BSP tree.

Page 18

CPortalList* CSectorMgr::createPortalList()
{
 unsigned int x;
 unsigned int numPartitions = pBspRoot->getNumPartitions();
 unsigned int numPortals = numPartitions;
 CPortalList* pPortalList = new CPortalList();
 for (x = 0; x < numPartitions; x++)
 {
 CBspNode* pBspNode = pBspRoot->getPartitionNode(x);
 CPortal* pPortal = createLargePortal(pBspNode);
 pPortal->partitionId = x;
 pPortalList->add(pPortal);
 }
 for (x = 0; x < numPartitions; x++)
 {
 CBspNode* pNode = pBspRoot->getPartitionNode(x);
 unsigned int i = numPortals-1;
 bool hasMorePortals = true;
 while (hasMorePortals)
 {
 CPortal* pPortal = pPortalList->get(i);
 int retval = classifyPortal(pPortal, pNode->plane);
 if (retval == ALPHA_SPANNING)
 {
 CPortal* pFront = new CPortal();
 CPortal* pBack = new CPortal();
 bool retsplit = pPortal->splitPolygon(pNode->plane, pFront,
pBack);
 if (retsplit)
 {
 pFront->partitionId = pPortal->partitionId;
 pBack->partitionId = pPortal->partitionId;
 pPortalList->add(pFront);
 pPortalList->add(pBack);
 pPortalList->remove(i);
 numPortals = numPortals+1;
 }
 else
 {
 delete pFront;
 delete pBack;
 }
 }
 if (i != 0)
 i--;
 else
 hasMorePortals=false;
 }
 }
 for (x = 0; x < numPortals; x++)
 {
 CPortal* pPortal = pPortalList->get(x);
 pPortal->id = x;
 }
 return pPortalList;

Page 19

}

Page 21

CBspNode* CBspNode::getLeafNode(CVector3 &location)
{
 if (isLeaf())
 return this;
 int retval = plane.classifyPoint(location);
 if (retval == ALPHA_BEHIND)
 {
 if (pBack)
 return pBack->getLeafNode(location);
 else
 return 0;
 }
 if (pFront)
 return pFront->getLeafNode(location);
 else
 return 0;
}

Page 22

void CSectorMgr::renderSector(int flags, unsigned int sectorId, unsigned int prevSectorId,
CFrustum* pFrustum, CVector3 &location)
{
 if (sectorId >= numSector)
 return;
 if (pSector[sectorId].beingVisited)
 return;
 unsigned int i;
 pSector[sectorId].beingVisited = true;
 for (i=0; i < pSector[sectorId].portalList.size(); i++)
 {
 CPortal* pPortal = pSector[sectorId].portalList.get(i);
 if (pFrustum->polygonInFrustum(pPortal))
 {
 if (pPortal->toSectorId != prevSectorId)

Page 23

Another useful extension to representing an environment via a network of cells

and portals is efficient collision detection. Given a vector of motion defined by a start

and end position, we test for collision via a recursive method. Before beginning the

method, we must first find the sector that contains the origin of the motion vector. The

BSP tree can be used to find this sector similar to how it is used in the first step of the

rendering function.

Given the sector that contains the origin of the motion vector, the simulation

engine first tests if the vector intersects any of the portals in that sector. If an intersection

exists, the collision procedure continues by testing for collision with the adjacent sector

to the intersected portal. Since each sector is convex, if a motion vector intersects a

portal polygon, it cannot possibly intersect any other polygon in that sector. If a collision

with a portal polygon is not present, the simulation engine then tests for collision against

the motion vector and all other polygons in the sector. If a collision is found, the motion

vector is restricted to not allow the motion to extend outside of a wall.

Using this approach as a solution for collision detection in architectural models, it

is necessary for only a small subset of polygons to be tested

Page 24

be created with CSG expressions, and then fed to the portal-sector algorithm to allow a

real-

Page 25

Figure 10.
A rendering of a BSP tree.

Figure 11.
Wireframe rendering showing large amount

of unnecessary polygons being rendered.

Figure 12.
Same rendering as above but using portal

technique. Green Regions are portal
polygons.

Figure 13.
Wireframe rendering showing the reduction
in polygons rendered using portal technique.

Page 26

Page 27

Bibliography

1. Luebke, D. and Georges, C. Portals and Mirrors: Simple, Fast Evaluation of

Potentially Visible Sets. Department of Computer Science, University of North
Carolina at Chapel Hill, Apri.5 4 Tc 12 0 0 12 126 6574tT 12 mh5 Tm
/9.75 T-15 (and) -15 (0-16 nd -16 nd -16 nd --15 l) 4315 l m /TT2 1 Tf [(Calina) -16 (at)246 668.25TT2 10 12 481.5 009m /TT2 1 Tf [(Caro40graphy) T2
46 Tc http://www.cs.virginia.edu/~l(and /puBT cations/portals.htm1.6 126 66.5 r(Caro3 -1.629N) 2s 0 0 BTf/TT2 0 12 48 /TT2 1 Tf41[(Ca40graphy) T2 1 12 246 668.25 Tm /TT2 1 Tf (1.)27 nd -16 nd --152.l) 4315 l m /TT2 1 T () 27na Caro27 nd -16 nd --1 -1B

