

Boston College
Computer Science Department

Senior Thesis 2002
Michael Tierney

Middleman - Linking Data Sources & Wireless Devices
Prof. Edward Sciore

 1

Introduction

 The combined technological developments of Java and XML have helped create

many advances in portability and customizable presentation of data. HTML, a cousin

technology to XML, played an important role in the creation of, and shortly thereafter,

the commercialization of the Internet. What HTML brought to the PC, XML will bring

to cell phones, handheld computers, and PDA's. HTML allows for the formatting and

presentation of text. XML takes an alternate approach to the handling of data. The

markup tags in XML specify the type of data and characteristics about the data aside

from presentation formatting. “HTML tells how data should look, but XML tells you

what it means.”1 The markup language says nothing about the presentation of the data;

rather, it says what type of data is presented.

Within the document are tags created by the developer and placed around the data

describing the data type. The XML document is then parsed and processed and

formatting is determined by data type. This independence from formatting is one of

XML’s major benefits. Because the documents do not specify explicitly how the data

should appear, different presentations can be used, depending upon the user manipulating

the data. For example, an animated, multicolor presentation with sound effects and voice

narration would be one way of presenting data. This type of presentation would be ideal

for a multimedia platform such as a powerful PC; however, a more limited cell phone

browser, which lacks the capabilities for animation, sound, and even multiple colors,

could not take full advantage of the data in this form. Instead, since XML supplies labels

 2

for the data, a designer could supply a schematic for the display of the data depending

upon the capabilities of the device used to view it.

 Furthermore, the document can contain a multitude of tags depending on the

context of the data being presented. This is because developers can create their own tags

based upon the needs of the application. In standard HTML, one would describe data as

being placed in a specific location, in a certain font, color, and size. In XML, data is

typed and described as FIRST NAME or STREET ADDRESS or STATE, or even

something totally unrelated such as COLOR. The only limits to the possible tag values

are the demands of the application and the imagination of the designer. This flexibility

allows XML to be a great tool for transferring commercial data from databases to end-

users. The querying system can pass both queries and results in XML format; portions of

the query, such as the selection criteria can be labeled as such with XML tags, and the

resulting data can be similarly identified, possibly with attributes such as table and field

names, as needed. XML is extensible, in that it can grow to encompass and

accommodate the data needs of the developer.

 While these two properties of XML seem to present great advantages to a

designer of a front end for database access, what is it about this markup language in

particular that shows promise in place of some proprietary language? It is simply that

XML is just that, a nonproprietary system. Multiple developers all over the world (since

XML supports Unicode) can write applications that parse, process, and understand XML

data. There is no Apple XML, no Sun XML, and (as of yet) no Microsoft version of

XML. It is all one

 6

In “SQL Server for Windows CE – A Database Engine for Mobile and Embedded

Platforms,” the authors, two Microsoft employees, describe a separate version of SQL

tailored specifically for the capabilities of mobile devices. This version of SQL is

designed to deal with the storage, battery, and bandwidth restrictions imposed by wireless

technology. I see no reason that multiple platforms would require multiple versions of

SQL Server.

If the base framework for SQL requests and responses were XML

correspondences, then a Middleman server could be used to sit between the client

initiating the query and the SQL database. The server could take the incoming XML

request, transform the query into proper SQL, and then process the results returned from

the database system.

The database administrator institutes filters to ensure that a client receives the

correct content, but does not specify the media used to convey that content. By allowing

the database to ignore the issue of media type and passing that task off to the Middleman

server, both the database and the client device can enforce “the abstractions of data

 8

server is ideally suited to the first type of query response, and can help ensure platform

independence by converting the response of the server into an XML document. The two

remaining query types provide an obstacle to the Middleman system, and the server must

compensate for the continuous streams by dealing with discrete portions of the data,

separating the stream into blocks of data, and converting the data pieces independently.

 While this final condition limits the applicability of the Middl

 9

client’s personal tastes. Data could be sent to a user’s system either on demand or based

upon a schedule of updates. “Integrated personalization and filtering are performed at

each terminal,”7 in the paper “Dynamic Personalization and Information Integration in

Multi-Channel Data Dissemination Environments,” by Goto and Kambayashi. In their

paper they stipulate that, “Each passenger has a mobile terminal. There is a software

agent having abilities to integrate and personalize information for the passenger in it.”8

The reasoning behind the author’s decision to handle personalization on the client side is

mainly in an effort to alleviate strain on the servers during high use periods.

The Middleman server system can help to alleviate server strain, simplify the task

of the client device, and personalize data as well. If the reasoning behind the author’s

choice to force the client device to perform the personalization is sound, then the case

where processing time becomes important is during high use periods. However, wireless

bandwidth, which is often a major constraint, would also be taxed during these high

usage periods. Therefore, forcing the client to filter and personalize requires that

extraneous and often simply unusable data be transmitted and then immediately discarded

by the client. This superfluous data transmission would entail very high bandwidth costs

in an environment already depleted of available signals. The Middleman system provides

a compromise that allows the constraint placed upon server processing time, as well as

lessens the bandwidth costs of the system proposed in Goto and Kambayashi’s paper.

First, the central and local servers would not have to waste processing time on

filtering and customizing the information. They can simply pass the raw data and some

basic information about the client device on to a network of Middleman servers. These

servers can then apply the correct filtering depending on the client device. An additional

 10

possibility would be the storage of personalized DTD or Schema documentation on the

Middleman server network that would allow for personalization of the data. After the

data has been filtered and personalized, it can be forwarded on to the client device, thus

reducing the amount of wireless bandwidth used. The mobile device need only append

information regarding its capabilities to the original request, which is forwarded on to the

Middleman system. While the adding of this supplementary information would slightly

increase the bandwidth used in placing the information request, the benefits of

prefiltering response data outweigh the costs imposed. The bandwidth used in sending a

small text document is negligible when compared to that used when sending a color

picture that the client device could not use.

Ozen’s paper “Highly Personalized Information Delivery to Mobile Clients,”

deals with the customization of data on mobile devices. “The degree of personalization,”

 11

“Since the queries will be executed on the documents fetched over the Internet, it is

natural to expect the documents to be in XML, XML being the emerging standard for

data exchange over the Internet.”10 However, with the addition of a Middleman server,

the capabilities of Ozen’s system can be expanded to deal with many more formats.

Middleman processes data in the natural language of the data source, be it HTML, XML,

or any of a variety of database response formats, and then converts that language into

XML for transmission to the client. Middleman could improve the personalization

system of Ozen’s paper by sitting between the XML Repository and the data sources, or

even by replacing the XML Repository and the Profile Processor altogether.

Middleman sits between the Repository and the data, intercepting data requests and

responses and formatting the communications correctly. (See figure 0) Instead of

requiring that all incoming data be in XML formatting, the Middleman server can handle

multiple formats, yet still provide personalized data in a consistent format to the client

device. Since the response to the client is sent in XML and applies a specified DTD, the

client will receive a result containing only the information requested, in useable formats

and media types.

 12

power demands on the smartcard can be greatly reduced. The goal behind Kuramitsu’s

system is to, “Place computers everywhere in the real world environment, providing ways

for them to interconnect, talk, and work together.”11 Kuramitsu proposes a complex

system of queries and objects that is finely tailored to work with the smartcard and

greatly reduces the time needed to transmit the data. However, while this object/query

system is fitted to the smartcard components, it fails to generalize well to other

technologies. Other devices with greater computational power could deal with the

additional overhead of a more unive

 13

systems, such as XML, would be ideal. Furthermore, since the data is routed to multiple

platforms, preprocessing and prefiltering, done by the Middleman server system, greatly

reduces wasted bandwidth and allows for further personalization of the data.

 By placing the Middleman between the EBS and the ED, or even by integrating

 14

System Design

 The basic premise of my system is to use a preprocessing server to intercept

requests from a user device destined for a database and to perform intermediary

processing tasks on both the request and the reply. This is done by first accepting a query

request formatted as an XML document. The request is structured in a specialized

Middleman query. The server then parses the request document to obtain key

information, such as client identification, the requested database file, the operations to be

performed upon that database, and the desired result format. The Middleman server then

matches the client device type, established by examining the identification against a local

XML file containing a device registry. Client capabilities, such as multimedia abilities,

are listed in this registry and associated with the identification tag in the XML query.

This last ingredient helps provide the major benefit of this system; by obtaining specific

attributes pertaining to the computing device, be it a web-enabled cell phone, an internet-

ready PDA, a desktop computer, or a BlackBerry RIM email device, the Middleman

server can prune down the results and tailor the information returned to the device to best

match its abilities.

 15

The above diagram (figure 1) shows the lifespan of a query, generated at the client

device, processed by the Middleman server, and passed on to the database. The result of

the query is passed back through the Middleman, additional processing is done, and the

adapted result is then passed back to the client.

 The Middleman server sits as a layer between the client and the database system.

It waits for an incoming connection until the client sends a connection request. Upon

connection, the client sends a short XML document containing a customized, simplified

version of a SQL query (see figure 2) and additional information. This query is then

processed, and the middleman server generates a new query, based on the language

 16

An XML based query, while quite verbose, is unambiguous and very simple to parse.

The middleman server can quickly determine which database system should be queried

and what the structure of the query would be. For example, if the addressbook table

 17

content in an alternate format. To do this, the result set from the backend database must

include multiple formats in the transmission to the Middleman server. From this large set

of results, the Middleman Server System creates a subset that meets the capabilities of the

requesting client. Pictures become words, charts and graphs become lists and statistics,

etc. Personal computers could support such graphical media, and thus if a PC instituted

the query the result would include multimedia content. Other devices, however, cannot.

Finally, once the middleman server has determined that the result set from the original

query contains only media displayable by the client device, the results are converted into

an XML document, and that document is passed back to the client originating the query,

along with any external files, such as sound files, images, or other file types.

 The multitude of platforms this system attempts to accommodate requires many

versions of the client program. A PC client would be quite different from a basic PDA

client, but all the programs serve similar purposes and share key components. The user

input must be collected together into an XML document, and a connection to the

middleman server must be established. Then the device must transmit the query

document, receive the results, and display the result of the query in the appropriate

manner. Since the client is written in Java, the core classes can be reused in various

client versions. The few classes that deal specifically with the device itself can be

altered, but the essential code remains the same.

 18

 The following are two sample use cases for the Middleman Server System,

detailing the tasks of the client device, the server, and the backend database.

Use Case I – Initial connection & configuration of back-end database/Middleman

communication.

1) Using a web interface to the Middleman system, a user elects to add a database to

the subscribed database listing.

2) Middleman responds by displaying a data entry screen, prompting the user for the

database name, the field titles, and the address of the database, as well as any

security restrictions necessary.

3) Middleman sends a test query to the database to ensure that all fields entered by

the user exist in the database, and that the databas

 19

2) Middleman server system receives the request from the client, adds the device to a

listing of subscribed clients, and assigns the client a unique identification code.

This code serves to allow the Middleman Server System a simple method of

identifying the initiator of any queries. Using the identification code the system

can access the database of clients and determine the device type used in initiating

the query, and thus tailor the response to suit the capabilities of the client. The

system responds to the initial request with an XML document containing the

assigned client identification. Using the “CurrentCount” field of the registry, as

shown in figure 4, the server would assign a designation of “JavaCell4” to the

client, and update the registry file accordingly.

3) If the client provided a device identification code not recognized by the system,

the Middleman Server System uses a default category containing a limited ability

list.

<Registry>
<Java_Cell_Phones>
 <CurrentCount>4</CurrentCount>
 <Subscribers>
 <Client>JavaCell1</Client1>
 <Client2>JavaCell2</Client2>
 <Client3>JavaCell3</Client3>
 </Subscribers>
 <AbilityList>
 <MIDISound>True</<MIDISound>
 <WAVSound>False</WAVSound>
 <PNGraphics>True</PNGraphics>
 <BMPGraphics>False</BMPGraphics>

 20

4) The client device receives the identification code from the Middleman system and

saves the code in a local configuration file. This code will be used in all future

correspondences between the client device and the Middleman.

Use Case III – The client, having already initialized the device with the system, performs

a query on a database through the Middleman Server System.

1) The client then attempts to initiate a query on the database system. A

transmission is sent to the Middleman system, requesting a listing of available

databases and their fields. This is done automatically when the client begins the

query process.

2) The Middleman system receives the request from the client and responds with an

XML document containing the most recent listing of subscribed databases and the

fields of each database.

3) Upon receipt of the database listing from the server, the client parses the XML

document and extracts a listing of the databases. The client program displays a

menu of the available databases.

4) The user selects the target database from the listing provided by the client

program. The client then extracts a listing of the fields belonging to the database

from the XML document provided by the Middleman server. From this list the

user selects fields which the Middleman server will use as a projection to query

the database.

5) After prompting the user for the projection list, the client program displays a

screen whereby the user can add selection conditions to the query. The user can

 21

enter the conditions by selecting fields. The client then prompts the user for the

type of equality (starts with, equals, less than, greater than, etc) and the value.

6) Aft

 22

11) According to the device type specified in the registry, the Middleman server then

prunes the response received from the backend database server. For example, if a

Java cell phone originated the request, the identification specified in the original

query would map to a cell phone in the registry. The Middleman server has a

listing of the capabilities of each type of device, and a default low-capability

setting for devices not matching any entry in the registry. Using the listing for a

cell phone, the Middleman server would know to remove any non-png (Portable

Network Graphic) files, any audio files, and any video files.

12) In the case that a conflict is found between the content presented by the database

and the capabilities of the client device, Middleman elects to either remove the

content, of if possible, present the information in an alternate format. Thus, it is

the responsibility of the backend database to provide a low-tech representation of

high-level data when possible. In this example, it would be the responsibility of

the database to provide images in png format in addition to any more complex

formats used, thus allowing Middleman to select from a variety of data types.

13) Middleman does not have any a priori knowledge of the data types of the database

fields, thus maximizing the plug-and-play ability of the interface. The back-end

database could change completely, and the only update needed on the Middleman

side is a new listing of field names. Middleman must analyze the results as they

are returned and discover the data type itself. By pushing the responsibility for

determining the data type of the result set onto the Middleman server

compatibility issues are reduced and the bulk of the processing load remains

Middleman’s responsibility.

 23

14) The Middleman system then converts the pruned down result set into an XML

document and passes it on to the originating client. Included in the XML

 24

Conclusion

 The Middleman server system acts as an interpreting and filtering system

providing customization, standardization, and optimization to a variety of client devices.

The purpose of the system is to allow a multitude of platforms to access data sources

without concern for formatting and media type. The Middleman can also act in concert

with other systems specialized for use with mobile devices. The Middleman system

provides a bridge between these specialized services and the clients. It generalizes the

data and allows XML to truly be the standard in data communication.

 As shown in the table in figure 5 below, the Middleman system effectively

reduces the bandwidth used in response to user queries. Using a series of queries on the

addressbook database requesting fields containing large data types, such as images, I

 25

the response of the bmp and jpg files that it knew the client could not use. While the

Middleman system requires a greater number of connections, due to the need to pass

additional database information, the bandwidth saved in the average case was

significantly lower, and contained a great deal less unusable information than direct

database access.

By converting various data types into XML format, filtering the data, and

eliminating extraneous media, the Middleman server links data sources and wireless

devices in a seamless manner. The use of XML as opposed to a proprietary alternative

assures that the data will be accessible by all, easily processed, logically arranged, and

free of irrelevant formatting data. By describing the data by type information instead of

formatting, XML presents a document that is easy to process, convert, and manipulate.

XML and Middleman function to make data of many types and from many sources easily

accessible to users at home, at work, and on the road.

 Number of Connections Bandwidth Used
Direct Connection 2 420,467
Using Middleman 5 89,116

Figure 5

If t

 26

Future Work

At the present time, the majority of Middleman configuration and updating is

done through directly manipulating configuration files on the only implemented server.

 27

queries can be saved in the profile on the Middleman server, and then quickly accessed

via a separate menu. This listing of queries would improve the speed and simplicity of

usage of the client program and would also reduce the amount of information that would

have to be transferred from the client to the Middleman server to initiate the query.

Instead of a verbose XML query document, the client would only have to pass a reference

to the index number of the stored query, and the Middleman could rapidly implement the

query. Instead of converting an XML query into the native language query of the

appropriate database server, the Middleman server would already have the converted

query stored locally, and would use that cached query on the backend database.

 With the extension of the Middleman Server System in these ways, the system

would be a viable product in the ever-growing attempt to deliver user based

personalization of content, balanced by the need to minimize bandwidth use. Middleman

presents an effective tool for corporations as well as individual users, allowing employees

to access essential data simply and quickly.

 29

 // this method takes the data stored in the rawinput vector and splits it up into fully defined field
names
 // and "adjusted input" which is a vector of the actual data corresponding by index to the field
names

 boolean go = true;
 Stack hold = new Stack();
 int count = 0;
 current = 0;
 while(go)
 {
 String temp = rawinput.get(count);
 if((temp[0] == '<') && (temp[1] == '/'))
 {
 if(current_ns.empty())
 system.out.println("Stack error! Malformed XML or improper
stack usage resulted in poping an empty stack");
 else
 {
 current_ns.pop();
 current--;
 }
 }
 else if((temp[0] == '<') && (temp[1] != '/'))

 {

n

n
 (eurrent_ns.poush() -2 ((tObjcto)) -2 (&(temp[)) -2 (&(;)
 TJ 0 Tc ET BT 9.96 0 0 9.96 341.48453.08 Tm /TT1 1 Tf (n) Tj ET BT 9.96 0 0 9.96 10 431208 Tm /TT1 1 Tf () Tj ET BT --) Tj 0 Tc ET o6 431208 Tm /TT1 1 Tf () Tj ET BT 9.96 0 0 9.96 262 461208 Tm /TT1 1 Tf () Tj ET BT 9.96 0 0 9.96 198 441208 Tm /TT1 1 Tf () Tj ET BT --

 t {
 T j E T c E T B T 0 -

 30

 // processData method

 rawinput.add((Object) (s));

 }

 31

public int loadDatabaseList() throws IOException{

 /* xml format
 <dblist>

 34

 compile.addValue(n, dpiece.getResultVal(n));
 }
 }
 catch (EOFException eofe) {
 System.out.println(eofe);
 eofe.printStackTrace();
 }
 catch (IOException eofe) {
 System.out.println(eofe);
 eofe.printStackTrace();
 }
 return (compile);
 }

 private void makeQuery(String targetdb, Vector projects, Vector whereconds)
 {
 // whereconds is a vector that holds an alternating series of matching (field, value) strings
 Querytype q = new Querytype;
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 DataOutputStream outputStream = new DataOutputStream(baos);
 String temp1, temp2;
 try {
 q.setTarget(targetdb);
 q.setNumFields(projects.size());
 for(int n = 0; n < projects.size(); n++)
 q.addProjList(String)(projects.elementAt(n));
 q.setNumConditions((whereconds.size() / 2));
 for(int n = 0l n < whereconds.size(); n+=2)
 {

 35

 private Stack screens = null;

 public mm_control()
 {

 36

 {
 display = (Displayable) screens.pop();
 }
 else
 {
 display = new Introscreen((Controller) this);
 }

 37

 }

 void addValue(int n, String s) {
 if(n > number_fields)
 {
 // since this is the loop control, this should NEVER happen, and if it does,
something really
 // strange is going on!
 system.out.println("Woah! somehow the number of the result being set is > total
of fields! see class RES");
 }
 else
 reslts.add((Object)(s));
 }

 void setValue(int n, String s) {
 if(n < number_fields)
 reslts.setElementAt(((String) (s)), n);
 }

}
public class Resolver

{
 private Vector _dBaseListing = null;
 private Vector _dBaseType = null;
 private int _number_bases = 0;

 public Resolver()
 {
 _dBaseListing = new Vector(5,5);
 _dBaseType = new Vector(5,5);
 _number_bases = 0;
 }

public void setResolverDBs(Vector v1, Vector v2){
 _dBaseListing = v1;
 _dBaseType = v2;
 _number_bases = v2.size();
}

public int getType(String Dname){
 for(int count = 0; count < _number_bases; count++)
 if((String)(v1.get(count)).equals(Dname))
 return v2.get(count);
 return –1;
} // returns the language of the database indicated

 39

Bibliography

Chase, Nicholas, XML and Java from Scratch. Que Publishing, Indianapolis,

Indiana; 2001.

Goldfarb & Prescod, The XML Handbook Third Edition. Prentice Hall PTR, New

Jersey; 2001.

Goto and Kambayashi, “Dynamic Personalization and Information Integration in

Multi-Channel Data Dissemination Environments.” Proceedings
of the Second ACM International Workshop on Data Engineering fore Wireless
and Mobile Access. ACM Press, NY; 2001

Huang and Garcia-Molina, “Publish/Subscribe in a Mobile Environment.”

Proceedings of the Second ACM International Workshop on Data Engineering
fore Wireless and Mobile Access. ACM Press, NY; 2001

Kuramitsu and Sakamura, “Towards Ubiquitous Database in Mobile

Commerce.” Proceedings of the Second ACM International Workshop on Data
Engineering fore Wireless and Mobile Access. ACM Press, NY; 2001

McLaughlin, Brett, Java and XML. O’Reilly & Associates, California; 2000.

Ozen, Kilic, Altinel, and Dogac, “Highly Personalized Information Delivery to

Mobile Clients.” Proceedings of the Second ACM International Workshop on
Data Engineering fore Wireless and Mobile Access. ACM Press, NY; 2001

Quin, Liam, Open Source XML Database Toolkit: Resources and Techniques for

Improved Development. Wiley Computer Publishing, New York; 2000.

St. Laurent and Cerami, Building XML Applications. McGraw-Hill, NY, NY; 1999.

Seshadri and Garret, “SQLServer for Windows CE – A Database Engine for Mobile

and Embedded Platforms.” Proceedings of the 16th International Conference on
Data Engineering. IEEE; 2000

Seydim, Dunham, and Kumar, “Location Dependent Query Processing.” Proceedings

of the Second ACM International Workshop on Data Engineering fore Wireless
and Mobile Access. ACM Press, NY; 2001

Villate, Pitoura, et al, “Extending the Data Services of Mobile Computers by External

Data Lockers.” Proceedings of the 11th International Workshop on Database and
Expert System Applications. IEEE; 2000.

