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1 Introduction

Consider two di¤erent parametric models, which we will callG and H . One of these models is correctly

speci…ed, but we don’t know which one (or both could be right). Both models include the same parameter

vector � . An estimator b� is calledDoubly Robust (DR) if b� is consistent no matter which model is correct.

The term double robustness was coined by Robins, Rotnitzky, and van der Laan (2000), but is based







Analogous to b� g, let b� h denote the estimator of � based on the momentsE [H (Z; � 0;  0)] = 0 , so b� h

and b h minimize a quadratic GMM objective function eQh(�;  ), and are asymptotically e¢ cient if model

H is true and modelG is not true. Finally, let b� f  (f)Tj lly, let



If G is correctly speci…ed, sog0(� 0; � 0) = 0, then there does not exist any f�; � g 2 � � � � � with

f



model H . In our applications, we likewise use the standard e¢ cient two step GMM method for estimating

the matrices 
̂ g and 
̂ h .

De…neeQg
0(�; � ) and eQh

0(�;  ) by

eQg
0(�; � ) � g0(�; � )0
 gg0(�; � ) and eQh

0(�;  ) � h0(�;  )0
 hh0(�;  )

for given positive de…nite matrices
 g and 
 h , where 
̂ g ! p 
 g and 
̂ h ! p 
 h .

Assumption A4: Assume there exists f� g(
 g); � g(
 g)g 2 � � � � � such that eQg
0(� g(
 g); � g(
 g)) <

eQg
0(�; � ) for all f�; � g 2 � � � � � nf� g(
 g); � g(
 g)g and there exists f� h(
 h);  h(
 h)g 2 � � � �  such

that eQh
0(� h(
 h);  h(
 h)) < eQh

0(�;  ) for all f�;  g 2 � � � �  nf� h(
 h);  h(
 h)g.

Assumption A4 says that, for each of the modelsG and H , there exists a unique value of the pa-

rameters that minimizes the limiting value of the GMM objective function. Given Assumptions A2

and A3, Assumption A4 will automatically be satis…ed for modelG when G is correctly speci…ed, with

f� g(
 g); � g(
 g)g = f� 0; � 0g, and similarly for f� h(
 h);  h(
 h)g when H is correctly speci…ed, by Lemma

2.3 of Newey and McFadden (1994). That is, for correctly speci…ed models, the minimizing value is the

true value.

The dependence of� , � , and  on the weighting matrices 
 g and 
 h in Assumption A4 re‡ects the

fact that, when model G or H is incorrectly speci…ed, the parameter values that minimize the GMM

criterion functions eQg
0(�; � ) and eQh

0(�;  ) may depend on the choice of weighting matrices
 g and 
 h . To

save notation, we will omit this dependence when
 g and 
 h are the standard e¢ cient two step GMM

weighting matrices. We have similarly dropped the dependence ofeQg
0(�; � ) and eQh

0(�;  ) on 
 g and 
 h to

save notation.

Together with our other Assumptions, Assumption A4 implies that GMM estimators of G or H will also

converge to some (pseudo-true) values when they are misspeci…ed. Consider, e.g., applying the standard





while if H is correctly speci…ed and andG is not, then

Ŵg ! p c
0

g
 gcg=kg

c0
g
 gcg=kg + 0

= 1:

Before getting to our ODR estimator given by equation (1), consider the simpler estimatore� de…ned

by

e� = Ŵgb� h +
�

1 � Ŵg

�
b� g: (4)

So e� is simply a weighted average of the GMM estimatesb� g and b� h , where the weights are proportional

to Q̂g and Q̂h . We will call e� the SODR (simpler ODR) estimator.

The intuition behind e� is straightforward (the asymptotic statements in this paragraph are proved

formally in the next section). Suppose modelH



Although the SODR e� has the desired DR property, it also has two drawbacks. First, whenG and H

are both correct, the ratio Ŵg converges to a random variable rather than a constant, which complicates

the limiting distribution of e� . Second, when bothG and H are correct, e� may be ine¢ cient, relative to a

GMM estimator that e¢ ciently combines the moments from both models.

To address both of these issues, reconsider now the third modelF , de…ned as the union of moments of

the models G and H . Speci…cally, letF (Z; �; �;  ) be the vector valued function consisting of the union

of elements ofG(Z; �; � ) and H (Z; �;  ). Then, letting bf (�; �;  ) � 1
n

P n
i=1 F (Z i ; �; �;  ), we can de…ne a

third GMM estimator

f b� f ; b� f ; b f g = arg min
f�;�; g2� � ���



as shown earlier has the same limiting value as eitherb� g or b� h , depending on which is correctly speci…ed.

The estimator b� therefore, like e� , has the desired DR property. We show later that b� avoids the

asymptotic issuese� has when bothG and H are correctly speci…ed, and thatb� generally performs better

than e� in …nite samples. This is whyb�





where U0(Ct ; X t ; � ) denotes@U(Ct ; X t ; � ) =@Ct . If the functional form of U0 is known, then this equation

provides moments that allow b and � to be estimated using GMM. But suppose we have two di¤erent pos-

sible speci…cations ofU0, and we do not know which speci…cation is correct. Then our ODR estimator can

be immediately applied, replacing the expression in the inner parentheses in equation (7) withG(Z; �; � )

or H (Z; �;  ) to represent the two di¤erent speci…cations. Here� would represent parameters that are the

same in either speci…cation, including the subjective rate of time preferenceb.

To give a speci…c example, a standard speci…cation of utility is constant relative risk aversion with

habit formation, where utility takes the form

U (Ct ; X t ; �) =
[Ct � M (X t )]

1�� � 1
1 � �

where X t is a vector of lagged values ofCt , the parameter � is the coe¢ cient of relative risk aversion, and

the function M (X t ) is the habit function. See, e.g., Campbell and Cochrane (1999) or Chen and Ludvigson

(2009). While this general functional form has widespread acceptance and use, there is considerable debate

about the correct functional form for M , including whether X t should include the current value of Ct or

just lagged values. See, e.g., the debate about whether habits are internal or external as discussed in the

above papers. Rather than take a stand on which habit model is correct, we could estimate the model by

ODR.

To illustrate, suppose that with internal habits the function M (X t ) would be given by eG (X t ; � ), where

eG is the internal habits functional form. Similarly, suppose with external habits M (X t ) would be given

by eH (X t ;  ) where eH is the external habits speci…cation. Then, based on equation (7), we could de…ne

G(Z; �; � ) and H (Z; �;  ) by

G(Z; �; � ) =

0

B
@bRt+1

�
Ct+1 � eG (X t+1 ; � )

� ��

) eG (X t ; � )
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(�;  ). This would generally be the case, because the potential information set of consumers at timet is

large relative the the number of parameters in the model.

3.2 Alternative Sets of Instruments

Consider a parametric model

Y = M (W; � ) + �

where Y is an outcome,W is a vector of observed covariates,M is a known functional form, � is a vector

of parameters to be estimated, and�



0 where G(Z; � ) is given by the stacked vectors

G(Z; � ) =

8
><

>:

X
�

Y � X
0
� x � S� s

�

L
�

Y � X
0
� x � S� s

�

9
>=

>;
. (8)

The main di¢ culty with applying this two stage least squares or GMM estimator is that one must …nd

one or more covariatesL to serve as instruments.

Lewbel (2012) proposes an alternative estimator that, rather than requiring that one …nd instrumentsL,

instead constructs instruments based on assumptions regarding heteroscedasticity. This estimator consists

of …rst linearly regressingS on X , and obtaining the residuals from that regression. Then a vector of

instruments P is constructed by setting P equal to demeanedX (excluding the constant) times these

residuals. This constructed vectorP is then used instead ofL above as instruments.8 As shown in Lewbel

(2012), one set of conditions under which the vectorP can be a valid set of instruments is when the

endogeneity inS is due to classical measurement error inS.

Let X c denote the vector X with the constant removed. Algebraically, we can write the instruments

obtained in this way as R = fX; P g where P = (X c �  1) (S �



X is a vector of covariates that a¤ect the consumer’s tastes, andS is the consumer’s total consumption

expenditures (i.e., their total budget, which must be allocated between food and non-food expenditures).

Suppose, as is commonly the case, thatS is observed with some measurement error. To deal with this

budget measurement error, a commonly employed set of instrumentsL consists of functions of the con-

sumer’s income. However, validity of functions of income as instruments for total consumption in a food

Engel curve assumes separability between the consumer’s decisions on savings and their within period food

expenditure decision, and this behavioral assumption may or may not be valid. It is therefore useful to

consider the alternative set of potential instruments P de…ned above. Use ofP does not require …nding

covariates from outside the model, like income, to use as instruments, but does require that certain mea-

surement error assumptions hold. Our later empirical application applies ODR to this application, thereby

obtaining consistent estimates of� if either L or P are valid instruments.

4 The ODR Estimator Asymptotics

In this section we show consistency of our ODR estimatorb� , and then derive its limiting distribution,

which is root n consistent and asymptotically normal. We make the following additional assumptions. What

these assumptions mostly do is ensure that GMM estimates of modelsG, H , and F are each asymptotically

normal around the true values when correctly speci…ed, and are suitably bounded in probability around

the pseudo-true values when misspeci…ed. We do not require asymptotic normality under misspeci…cation.

Assumption A5: G(Z; �; � ), H (Z; �;  ) and F (Z; �; �;  ) are continuous atf�; � g 2 � � � � � , f�;  g 2

� � � �  , and f�; �;  g 2 � � � � � � �  respectively, with probability one.

Assumption A6



f� h ;  hg; and � f � f� f ; � f ;  f g. If the models G and H are correctly speci…ed,� g
0 = � g, � h

0 = � h , and

� f
0 = � f .

Assumption A7: With probability one, G(Z; �; � ), H (Z; �;  ), and F (Z; �; �;  ) are twice continu-

ously di¤erentiable in a neighborhood@g of � g, @h of � h , and @f of � f , respectively.

Assumption A8: Hg(� g
0) � r � g0(� g

0)
 gr �0 (3022g
0) � Hg)g0=\021 r�

g0(3022g
0 =0(� g

0 = (=g0) � r







Case 1) Suppose bothg0(� 0; � 0) = 0 and h0(� 0;  0) = 0 . Then f b� g; b� gg ! p f� 0; � 0g, f b� h ; b hg ! p

f� 0;  0g, and f b� f ; b� f ; b f g ! p f� 0; � 0;  0g, so Q̂g ! p 0; Q̂h ! p 0, and Q̂f ! p 0. By Lemma 1, Ŵf and

Ŵf Ŵg



The …rst part of Theorem 2 states that the ODR estimator b� is root n consistent and asymptotically

normal, while the second part gives a consistent estimator for the limiting variance ofb� . The proof of

Theorem 2 is given in the Supplemental Appendix. The basic structure of the proof follows Newey and

McFadden (1994) for multistep parametric estimators.

Note that while consistency only requires0 < � < 1, Theorem 2 assumes� > 1=2 to ensure
p

n-

consistency ofb� . This condition is only required for the case where� g 6=� h .

The estimator of eV given in equation (10) does not require knowing which of the modelsG or H is

correct. Nevertheless, as shown in the Supplemental Appendix,eV will either equal a matrix eV g or eV h or

eV f , depending on whether modelsG, H , or both are correctly speci…ed.

A fact that complicates the derivation of Theorem 2 is that b� h
i does not consistently estimate the

in‡uence function of b� h if model H is not correctly speci…ed. Similarly,b� g
i is not consistent if model

G is misspeci…ed, andb� f
i is not consistent if either G or H is misspeci…ed. However, it turns out that

to estimate the limiting variance of b� , we do not need to consistently estimate the in‡uence function of

any incorrectly speci…ed GMM. For example, in the limiting variance formula for b� , the function b� h
i is

multiplied by Ŵ Ŵ

g

,s(to)9008(if)-392(mo)-28(del)]TJ /TT2 10.909 T65.5H � h
i





estimators, the numerator of the weight on modelH depends on the criterion for modelG (i.e., on eQg)

designed to put all weight on modelH when modelG is wrong but H is correct, and vice versa.

A di¤erence betweene� MG



that vary by correlations � Rj and � Qj . The …rst design takes� Rj = � Qj = 0 , which makes both models

right (both sets of instruments are valid). The second takes� R1 = � R2 = 0, � Q1 = 0:4, and � Q2 = 0:6,

which makes modelG right (i.e., R are valid instruments so G is correctly speci…ed) and modelH be

wrong (i.e., Q are not valid instruments, because they correlate with the model error�). The third takes

� R1 = 0:4, � R2 = 0:6 and � Q1 = � Q2 = 0, which makes modelH right and model G wrong.

For the tuning function � discussed in sections 2.3 and 4.4, we consider two di¤erent choices;� 1

�
nQ̂

�
=

exp
�

nQ̂
�

� 1 and � 2(nQ̂) = ( nQ̂)2 so the weighting functions Ŵg and Ŵf are

� 1 : Ŵg =
expfn Q̂g(b� g; b� g)g � 1

expfn Q̂g(b� g; b� g)g + expfn Q̂h(b� h ; b h)g � 2
, Ŵf = 1 �

1

expfn � Q̂f (b� f ; b� f ; b f )g
; (12)

� 2 : Ŵg =
fn Q̂g(b� g; b� g)g2

fn Q̂g(b� g; b� g)g2 + fn Q̂h(b� h ; b h)g2
, Ŵf = 1 �

1

fn � Q̂f (b� f ; b� f ; b f )g2 + 1
: (13)

For the tuning parameter � , we use� = 1 � p, wherep is the p-value of the Wald statistic as discussed in

section 2.3.

We report eight estimates of � 1 and � 0 for each simulation. First is GMM based on the modelG

moments, denoted byGMM g (which is only consistent if modelG is right). Second isGMM based on the

H moments, denoted byGMM h



We report skewness (Skew) and kurtosis (Kurt) of these t-statistics across simulations, and the frequency

(Freq) that these t-statistics are less than 2 in magnitude, corresponding to the frequency with which a

�2 estimated standard error con…dence interval contains the true parameter value. Also, to check the

accuracy of the standard error estimates, we report the average of the estimated standard errors (SE),

and standard deviation of the estimated standard errors (SDSE ), across the simulations. The last …ve

summary statistics are not reported for SODR, because we do not consider its limiting distribution due

to the random probability limit of Ŵg.

When both sets of instruments are valid,ODR estimates are almost as precise asGMM f , and when

either set of instruments is invalid, ODR estimates are more precise than inconsistentGMM estimators.

The SODR estimates are found to be less e¢ cient thanODR when both G and H models are valid (as

expected), but when one model is invalid,SODR is similar to ODR. In this application, the cost in



Table 1. Simulation Results of � 1 (



Table 2. Simulation Results of � 0 (n = 100)

Bias Mde RMSE MAE SD Skew Kurt Freq SE SDSE

Both correct

GMM g -0.0038 -0.0048 0.0112 0.0687 0.1058 0.0005 3.1738 0.9415 0.1009 0.0089

GMM h -0.0024 -0.0090 0.0134 0.0757 0.1157 -0.0131 2.9788 0.9490 0.1115 0.0182

GMM f -0.0046 -0.0073 0.0113 0.0688 0.1063 0.0212 3.1124 0.9350 0.0981 0.0085

MG -0.0022 -0.0063 0.0115 0.0697 0.1071 0.0291 3.0642 0.9440 0.1022 0.0110

ODR � 1 -0.0039 -0.0062 0.0113 0.0686 0.1063 0.0583 3.0524 0.9370 0.0989 0.0092

ODR � 2 0.0001 -0.0017 0.0105 0.0687 0.1025 -0.0532 3.1744 0.9525 0.0990 0.0088

SODR � 1 -0.0016 -0.0067 0.0120 0.0703 0.1097

SODR � 2 0.0014 0.0023 0.0108 0.0707 0.1041

G correct

GMM g -0.0038 -0.0060 0.0112 0.0683 0.1060 -0.0390 3.1287 0.9395 0.1009 0.0108

GMM h -0.2005 -0.1977 0.0554 0.1977 0.1234 0.1485 3.0509 0.5750 0.1103 0.0179

GMM f -0.0744 -0.0737 0.0219 0.0999 0.1280 -0.0354 3.1266 0.7540 0.0867 0.0074

MG -0.0401 -0.0396 0.0140 0.0774 0.1115 -0.1154 3.1855 0.8885 0.0954 0.0109

ODR � 1 -0.0258 -0.0198 0.0147 0.0722 0.1186 -0.2332 3.2476 0.9010 0.0996 0.0120

ODR � 2 -0.0245 -0.0198 0.0136 0.0744 0.1139 -0.2004 3.0110 0.9065 0.0995 0.0114

SODR � 1 -0.0258 -0.0198 0.0147 0.0722 0.1186

SODR � 2 -0.0240 -0.0194 0.0136 0.0745 0.1142

H correct

GMM g -0.1151 -0.1166 0.0230 0.1198 0.0989 0.0139 2.8983 0.6735 0.0808 0.0069

GMM h -0.0028 -0.0088 0.0133 0.0722 0.1153 -0.2405 2.9748 0.9530 0.1123 0.0344

GMM f -0.0963 -0.0966 0.0203 0.1039 0.1050 -0.0085 2.9169 0.7095 0.0791 0.0068

MG -0.0035 -0.0094 0.0133 0.0720 0.1151 -0.2389 2.9660 0.9515 0.1120 0.0343

ODR � 1 -0.0051 -0.0105 0.0131 0.0725 0.1146 -0.2535 2.9609 0.9475 0.1109 0.0320

ODR � 2 -0.0084 -0.0187 0.0135 0.0753 0.1159 -0.1964 3.0290 0.9380 0.1095 0.0287

SODR � 1 -0.0029 -0.0089 0.0133 0.0722 0.1153

SODR � 2 -0.0038 -0.0144 0.0138 0.0760 0.1176
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Table 4. Simulation Results of � 0 (n = 500)

Bias Mde RMSE MAE SD Skew Kurt Freq SE SDSE

Both correct

GMM g -0.0010 -0.0002 0.0021 0.0315 0.0458 -0.1391 2.9732 0.9565 0.0459 0.0018

GMM h -0.0008 0.0005 0.0024 0.0328 0.0492 -0.1701 3.0631 0.9500 0.0491 0.0030

GMM f -0.0011 0.0000 0.0021 0.0311 0.0458 -0.1335 2.9799 0.9550 0.0454 0.0017

MG -0.0007 0.0004 0.0021 0.0311 0.0463 -0.1527 3.0340 0.9570 0.0462 0.0021

ODR � 1 -0.0010 0.0000 0.0021 0.0310 0.0459 -0.1327 3.0063 0.9540 0.0455 0.0018

ODR � 2 0.0009 -0.0005 0.0022 0.0315 0.0471 0.0061 2.9664 0.9445 0.0455 0.0019

SODR � 1 -0.0005 0.0003 0.0022 0.0321 0.0468

SODR � 2 0.0010 0.0003 0.0023 0.0334 0.0483

G correct

GMM g -0.0010 -0.0003 0.0021 0.0314 0.0458 -0.1566 2.9735 0.9570 0.0459 0.0021

GMM h -0.2000 -0.2000 0.0428 0.2000 0.0529 0.0663 3.1573 0.0225 0.0495 0.0033

GMM f -0.0732 -0.0731 0.0084 0.0739 0.0554 0.0501 2.9813 0.5400 0.0402 0.0014

MG -0.0012 -0.0004 0.0021 0.0314 0.0458 -0.1553 2.9705 0.9570 0.0458 0.0021

ODR � 1 -0.0010 -0.0003 0.0021 0.0314 0.0458 -0.1563 2.9744 0.9570 0.0459 0.0021

ODR � 2 -0.0020 -0.0011 0.0021 0.0315 0.0459 -0.1685 2.9918 0.9550 0.0457 0.0021

SODR � 1 -0.0010 -0.0003 0.0021 0.0314 0.0458

SODR � 2 -0.0020 -0.0011 0.0021 0.0315 0.0459

H correct

GMM g -0.1122 -0.1121 0.0146 0.1121 0.0448 -0.0037 3.0575 0.1945 0.0367 0.0013

GMM h -0.0007 -0.0007 0.0024 0.0329 0.0494 -0.2688 3.0914 0.9480 0.0492 0.0048

GMM f -0.0938 -0.0948 0.0111 0.0948 0.0481 -0.0661 2.9792 0.3445 0.0366 0.0013

MG -0.0007 -0.0007 0.0024 0.0329 0.0494 -0.2688 3.0914 0.9480 0.0492 0.0048

ODR � 1 -0.0007 -0.0007 0.0024 0.0329 0.0494 -0.2688 3.0914 0.9480 0.0492 0.0048

ODR � 2 -0.0011 -0.0038 0.0025 0.0340 0.0500 -0.1804 2.9318 0.9555 0.0491 0.0049

SODR � 1 -0.0007 -0.0007 0.0024 0.0329 0.0494

SODR � 2 -0.0011 -0.0037 0.0025 0.0340 0.0500
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GMM . This suggests a modest advantage of the exponential tuning function� 1.

One should expect correctly speci…edGMM estimators to be more e¢ cient thanODR, and that is

indeed the case. But in many of the simulations, the loss in e¢ ciency from usingODR is very low. In

particular, when model G is invalid, so only the weaker instruments are valid, the precision ofODR is

almost identical to that of the e¢ cient GMM h . So, using ourODR, there is little loss in e¢ ciency from

not knowing which speci…cation is correct. In summary, we conclude that our proposedODR works well,

even at low sample sizes.

6 Empirical Application: Engel Curve Estimation

Here we empirically estimate the Engel curve example discussed in section 3.2.Y is the food budget

share, S is log real total consumption expenditures, andX is a vector of other covariates that serve

as controls11. The goal is estimation of the coe¢ cient ofS in a regression ofY on S and X . Total

consumption S is observed with measurement error, so instrumental variables estimation is used to correct

for the resulting endogeneity. The vectorL consists of two candidate external instrumental variables, real

total income and real total income squared. ModelG assumes these external instruments are valid. Model

H instead assumes that constructed instruments based on heteroscedasticity as described by Lewbel (2012)

and summarized in section 3.2 above are valid. Model::



which are heteroscedasticity based constructed instruments.GMM f is the GMM estimator that uses both

sets of instruments, andSODR and ODR are our new estimators given in equations (4) and (1) with the

tuning functions � 1 and � 2.

The estimated results show that the external instruments of modelG are much stronger than the

constructed instruments of model H . This is not surprising since the constructed instruments are based

on higher moments of the data. This di¤erence in strength can be seen in the standard errors of̂� s, which

are much lower in modelG than in model H , and also in modelGMM f which gives estimates much closer

to GMM g than GMM h .

The point estimates of GMM g and GMM h are substantially di¤erent, which could be due to having

one of these sets of instruments be invalid. However, this di¤erence could also just be due to imprecision,

particularly of GMM h . This illustrates the usefulness of ourODR, which does not require resolving which

set of instruments is valid, or if both are valid.

Table 5. Engel Curve Estimates

GMM g0 GMM g GMM h GMM f SODR � 1 ODR � 1 SODR � 2 ODR � 2

�̂ s -0.0859
(0:0198)

-0.0840
(0:0197)

-0.0521
(0:0546)

-0.0862
(0:0177)

-0.0812 -0.0862
(0:0192)

-0.0831 -0.0862
(0:0192)

�̂ 0 0.336
(0:0122)

0.335
(0:0120)

0.317
(0:0328)

0.337
(0:0109)

0.333 0.337
(0:0118)

0.335 0.337
(0:0118)

� 2 0.191 12.91 15.94

d:f: 1 11 13

p-value 0.662 0.299 0.252

Q̂ 0.0002 0.0014 0.0014

Ŵg; Ŵf ; p 0.09, 0.004, 0.86 0.03, 0.000, 0.86

13

13Table 5 notes: We report coe¢ cient estimates with associated standard errors in parentheses, except SODR. Also reported

is � 2 , the Hansen (1982) test statistics for overidenti…ed GMM, along with their degrees of freedomd: _f . and p-values. Q̂ is

the normalized minimand of the GMM estimators. The last row reports weights Ŵg , Ŵf , and givesp, which is the p-value of

the Wald statistic testing the null hypothesis that b� g = b� h . This p is used to construct � = 1 � p in Ŵf in equation (5), as

explained in section 2.3.
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The estimated weight Ŵg is 0:09 with the tuning function � 1 and 0:03 with � 2, so SODR puts over

ten times as much weight on modelG as on modelH . However, in ODR the weight on model F , 1 � Ŵf ,

is 0:996with � 1 and is one to three decimal places with� 2. The very small di¤erence in Ŵf between� 1

and � 2 is why both of the ODR estimates appear the same in Table 5 (they actually di¤er in the fourth

signi…cant digit: -0.08617 vs. -0.08619 for̂� s).

The very high weight on modelF strongly suggests that both models are likely to be correctly speci…ed.

This therefore implies that the di¤erence betweenGMM g and GMM h is likely due to imprecision ofGMM h

rather than misspeci…cation of the constructed instruments in modelH . Further evidence that both are



all s � 0, and the third either converges to a constant or diverges depending ons (and sometimes� ) as

discussed below.14

First suppose modelG is locally misspeci…ed withs > 1=2. Thenn eQg
�

b� g; b� g

�
! d � 2

kg
(0), which is the

same limit as whenG is correctly speci…ed, and similarly forH . As a result, in this case the SODR and

ODR estimators have the same
p

n consistent, asymptotically normal limiting distribution as they have

when G is correctly speci…ed, and similarly forH . Note this means that instead of requiring that either

G or H (or both) be correctly speci…ed, it is su¢ cient to assume that eitherG or H (or both) are locally

misspeci…ed withs > 1=2, noting that correct speci…cation is the special case ofs = 1.

If model G is locally misspeci…ed withs < 1=2, then n eQg
�

b� g; b� g

�
diverges, and the SODR has the

same
p

n consistent, asymptotically normal limiting distribution as when G is globally misspeci…ed. The

ODR will also have the same limiting distribution as when G is globally misspeci…ed, as long as the tuning

parameter � has � > s + 0:5. This then guarantees that model G will asymptotically have zero weight.

Since these cases are equivalent asymptotically toG being globally misspeci…ed, we need to assume thatH

is either correctly speci…ed, or locally misspeci…ed with itss > 1=2. This generalizes our original theorems

that simply assumed either G or H is correctly speci…ed.

Finally, suppose modelG is locally misspeci…ed withs = 1=2. Then n eQg converges to a noncentral

chi-squared distribution. Speci…cally,n eQg
�

b� g; b� g

�
! d � 2

kg
(! 0

g
 g! g), where the object in parentheses is

the noncentrality parameter and the formula for ! g is given in the Supplemental Appendix. In this case

the GMM estimator of model G is consistent but not
p

n consistent, as established in, e.g., Newey and

McFadden (1994). Heren eQg is still bounded in probability, and if H is correctly speci…ed (or locally

misspeci…ed with itss > 1=2), then n eQf is also bounded in probability. Thus, ODR will asymptotically

put weight on model F , which then is consistent but may not be
p

n consistent. As a result, in this knife

edge case, ODR will be consistent, but not
p

n consistent, since
p

n( �̂ ��



will have the same limiting distribution as e¢ cient GMM with both G and H correctly speci…ed. If just

G is locally misspeci…ed withs > 1=2(again including as a special case havingG be correctly speci…ed by

s = 1), and H is either misspeci…ed or locally misspeci…ed withs < 1=2, then (assuming� > s + 0:5)

ODR will have the same limiting distribution as e¢ cient GMM based just on model G (and vice versa,

exchanging the roles ofG and H ). Equivalently we can say that our earlier Theorem 2 still holds, replacing

"correctly speci…ed model" with "locally misspeci…ed model having anys > 1=2, including s = 1" and

replacing "incorrectly speci…ed model" with "locally misspeci…ed model having anys < 1=2, including

s = 0."

We conclude this section with some additional Monte Carlo results (reported in Tables 6 and 7 in the

Supplemental Appendix), which we …nd support these conclusions. We use the same designs and estimators

as in section 5 but with a drift parameter s for the locally misspeci…ed cases. SinceODR performed better

with the tuning function � 1 in section 5, to save space we only reportODR � 1 , along with GMM g, GMM h ,

and GMM f . In these tables, modelH is either globally misspeci…ed, or locally misspeci…ed withs equal

to 0:25, 0:50, or 0:75. In Tables 6-1 and 6-2 modelG is correctly speci…ed, while in Tables 7-1 and 7-2,G

is locally misspeci…ed withs = 0:75.



estimation of � would then be the weighted average

e� � =
Q̂g(b� g; b� g)Q̂h(b� h ; b h)b� l + Q̂l (b� l ; b� l )Q̂h(b� h ; b h)b� g + Q̂l (b� l ; b� l )Q̂g(b� g; b� g)b� h

Q̂g(b� g; b� g)Q̂h(b� h ; b h) + Q̂l (b� l ; b� l )Q̂h(b� h ; b h) + Q̂l (b� l ; b� l )Q̂g(b� g; b� g)
(14)

=

b� l

Q̂ l ( b� l ;b� l )
+ b� g

Q̂g ( b� g ; b� g )
+ b� h

Q̂h ( b� h ;b h )
1

Q̂ l ( b� l ;b� l )
+ 1

Q̂g ( b� g ; b� g )
+ 1

Q̂h ( b� h ;b h )

: (15)

In equation (14), the weight on b� l is proportional to the product of objective functions for the other models,

Q̂gQ̂h , and similarly for the weights on b� g and b� h .

The above estimator is a simple extension of ourSODR estimator because theSODR can be rewriten

as

e� =

b� g

Q̂g ( b� g ; b� g )
+ b� h

Q̂h ( b� h ;b h )
1

Q̂g ( b� g ; b� g )
+ 1

Q̂h ( b� h ;b h )

:

The logic of e� � is the same as for theSODR estimator. For example, if model G is right and models L

and H are wrong, then only b� g



can su¤er from well known …nite sample biases when models have many more moments than parameters,

and particularly when some moments might be weak. In such cases, it may be desirable to let modelsG

and H equal just a subset of the available moments for each. Existing moment selection methods such as

Andrews and Lu (2001), Caner (2009), or Liao (2013) might be used prior to applying ODR, though this

then introduces pretest bias that ODR is intended to avoid. A potential subject for future work could be
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Supplemental Appendix: Over-Identi…ed Doubly Robust Identi…cation
and Estimation

by Arthur Lewbel, Jin-Young Choi, and Zhuzhu Zhou

Original 2018, Revised November 2021

This Supplemental Appendix consists of …ve parts. The …rst is a proof of Lemma 1 and of
Theorem 2, which give the asypmtotic properties of ODR described in Section 4.1-2. The second
part is a proof of Lemma 2 and of Theorems 3 and 4, which provide asymptotic properties of ODR



wherekg is the degrees of freedom of the chi-squared statistic thatn eQg converges to if theG model
is true. That is the integer kg is the number of moments inG (� ekg) minus the number of elements
in � and � (� k�

g) which is positive as discussed earlier. For notational simplicity, letQ̂g, Q̂h, and
Q̂f denote Q̂g(�̂ g; �̂ g); Q̂h(�̂ h; ̂ h); and Q̂f (�̂ f ; �̂ f ; ̂ f ); respectively. The population version of Q̂
corresponding to each model is

Qg
0 �

c
0

g
 gcg

kg
; Qh

0 �
c

0

h 
 hch

kh
; Qf

0 �
c

0

f 
 f cf

kf
:

If the model is correctly speci…ed, thenQj
0 = 0, j = g; h; f .

Our proposed ODR estimator is a weighted average ofb� g, b� h, and b� f , taking the form

b� = Ŵf Ŵgb� h + Ŵf

�
1 � Ŵg

�
b� g + (1 � Ŵf )b� f (1)

Proof of Lemma 1.
To obtain the probability limits of Ŵg and Ŵf , …rst we consider without loss of generality

the probability limit of Q̂g when model G is correctly speci…ed, and when it’s misspeci…ed. The
asymptotics for Q̂h and Q̂f are obtained following the same logic. After these derivations, we then
obtain the probability limits of Ŵg and Ŵf based onQ̂g, Q̂h and Q̂f . First we have

nQ̂g = f 
̂ 1=2
g

p
nbg(�̂ g)g0f 
̂ 1=2

g

p
nbg(�̂ g)g

1
kg

: (2)

From the …rst order condition for �̂ g minimizing eQg(� ), we have
p

nr � bg(�̂ g) � 
̂ gbg(�̂ g) = 0:

Taylor-expanding the last term bg(�̂ g) around � g gives

0 =
p

nr � bg(�̂ g) � 
̂ gf bg(� g) + r � 0bg(�
g
)( �̂ g � � g)g

= r � bg(�̂ g) � 
̂ g
p

nbg(� g) + r � bg(�̂ g) � 
̂ gr � 0bg(�
g
)
p

n(�̂ g � � g)

where �
g

is a mean value between� g and �̂ g



where �
g

is a mean value between� g
0 and �̂ g. Plug equation (3) with � g replaced by � g

0 into this
equation to get


̂ 1=2
g

p
nbg(�̂ g) = 
̂ 1=2

g

p
nbg(� g

0) � 
̂ 1=2
g r � 0bg(�

g
)(Ĥ g)�1 r � bg(�̂ g)
̂ g

p
nbg(� g

0)

= fI ekg
� 
̂ 1=2

g r � 0bg(�
g
)(Ĥ g)�1 r � bg(�̂ g)
̂ 1=2

g g � 
̂ 1=2
g

p
nbg(� g

0) = �̂ �
g
̂ 1=2

g

p
nbg(� g

0); (4)

where �̂ �
g � I ekg

� 
̂ 1=2
g r � 0bg(�

g
)(Ĥ g)�1 r � bg(�̂ g)
̂ 1=2

g

and I ekg
is the ekg � ekg identity matrix and ekg is the number of moments in the modelG.

By Assumption A10 and the Lindberg-Levy CLT,
p

nbg(� g
0) ! d N�1r � NN!^��



Under Assumption A13,
p

nfr � bg(� g) � r � g0(� g)g is asymptotically normal with mean zero
by the Lindberg-Levy CLT, so it is bounded in probability. And

p
n(
̂ g � 
 g) is also bounded

in probability by Assumption A12. Under Assumption A7, A10, A11, A14, and the consistency
of ^

n



and Ŵf Ŵg ! p 0.

Case 3). Suppose nowg0(� 0; � 0) 6= 0but h0(� 0;  0) = 0 . Then f �̂ g; �̂ gg ! p f� g; � gg, f �̂ h; ̂ hg ! p

f� 0;  0g, and f �̂ f ; �̂ f ; ̂ f g ! p f� f ; � f ;  f g. So Q̂g ! p Qg
0 = c

0

g
 gcg=kg > 0, Q̂h ! p Qh
0 =

c
0

h 
 hch=kh = 0, and Q̂f ! p Qf
0 = c

0

f 
 f cf =kf > 0. Following the same argument as in Case 2),
Ŵg ! p 1 and Ŵf ! p 1. In short, the probability limits of Ŵf and ŴgŴf are categorized as follows:

Case 1) BothG and H are correctly speci…ed =) Ŵf ! p 0 and Ŵf Ŵg ! p 0;
Case 2)G is correctly speci…ed, butH is not =) Ŵf ! p 1 and Ŵf Ŵg ! p 0;
Case 3)H is correctly speci…ed, butG is not =) Ŵf ! p 1 and Ŵf Ŵfg ! p 1:

Q.E.D.

Proof of Theorem 2 .
Recall equation (1) and rewrite it as

�̂ = � 0 + Ŵf Ŵg(�̂ h � � 0) + Ŵf

�
1 � Ŵg

�
(�̂ g � � 0) + (1 � Ŵf )( �̂ f � � 0):

From this, we have

p
n(�̂ � � 0) = Ŵf Ŵg

p
n(�̂ h � � 0) + Ŵf

�
1 � Ŵg

� p
n(�̂ g � � 0) + (1 � Ŵf )

p
n(�̂ f � � 0)

= Ŵf Ŵg
p

n(�̂ h � � h) + Ŵf

�
1 � Ŵg

� p
n(�̂ g � � g) + (1 � Ŵf )

p
n(�̂ f � � f ) (9)

+ Ŵf Ŵg
p

n(� h � � 0) + Ŵf

�
1 � Ŵg

� p
n(� g � � 0) + (1 � Ŵf )

p
n(� f � � 0):



Case 2). SupposeG is correct, but H is not (� h � � 0 � � h 6= 0). In this case, F is also
misspeci…ed (� f � � 0 � � f 6= 0). (9) can be rewritten as

p
n(�̂ � � 0) = Ŵf f f

� �
08d [())-278(=)]TJ22(+711 3.2.383d (^)Tj /TT1 11.955 Tf -3.412 -3.022 Td (W)Tj /TT2 7.97 Tf 11.051 -1.793 Td (f)Tj /TT5 11.9556Tf 71.559 72.4 Td 11(621)Tj /TT5 11.955 Tf 4.732 1.7.182 Td3d [ )Tj 1 11.955 Tf 11.238 17951000^W

n(�̂0� � 0) =n(�̂0��
f�2013
f 9013f



Appendix II: Proof of Lemma 2 and Theorems 3 and 4

Let the model G be “locally misspeci…ed”when the parameter in the data generating process
takes the form � g = � g

0 + � gn�s for a constant � g and s > 0, while � g
0 satis…esEfG(Z; � g

0)g = 0 due to



Following the same steps as in Case ii) of Lemma 1, we can rewrite the last term other than
(Ĥ g)�1 in (15) as

r �



Case 4). Suppose that modelG is correct, but H is locally misspeci…ed with� h = � h
0 + � hn�s .

In this case,F is also locally misspeci…ed with� f = � f
0 + � f n�s for some� f .

Case 4-1). If s = 1=2, as shown in Case iii), nQ̂h ! d � 2
kh

(! 0
h 
 h! h)=kh and

nQ̂f ! d � 2
kf

(! 0
f 
 f ! f )=kf as n ! 1. Thus Ŵg = nQ̂g(�̂ g; �̂ g)=fn Q̂g(�̂ g; �̂ g) + nQ̂h(�̂ h; ̂ h)g con-

verges to a distribution on (0; 1). For Ŵf , we have

Ŵf = 1 �
1

n� Q̂f + 1
= 1 �

1

n� �1 nQ̂f + 1
! p 0;

becausenQ̂f is bounded in probability, and n� �1 ! p 0. Thus, ŴgŴf ! p 0.
Case 4-2). Ifs > 1=2,nQ̂h ! d � 2

kh
=kh, and nQ̂f ! d � 2

kf
=kf . Therefore, it is asymptotically the

same as Case 1) of Lemma 1.
Case 4-3). If s < 1=2, nQ̂h and nQ̂f are Op(n2(1=2�s) ), as each is a squared version of a term

analogous to (18). In this case, whereaŝWg ! p 0, convergence ofŴf depends on the relationship
between� and s. Becausen� Q̂f = O(n � �1 )Op(n2(1=2�s) ) = Op(n � �2s ), when � > 2s, n� Q̂f diverges
to result in Ŵf ! p 1 and ŴgŴf ! p 0. When � < 2s, n� Q̂f ! p 0, and consequentlyŴf ! p 0 and
Ŵf Ŵg ! p 0. When � = 2s, however, (18) shows thatn� Q̂f ! p ! 0

f 
 f ! f because only the last term
of (18) matters, so that Ŵf ! p W �

f � 1 � (! 0
f 
 f ! f + 1) �1 and ŴgŴf ! p 0.

Case 5). Suppose that modelG is locally misspeci…ed with� g = � g
0 + � gn�s , but model H is

correct. Then essentially the same arguments as in Case 4) apply.
Case 5-1). If s = 1=2, then nQ̂g ! d � 2

kg
(! 0

g
 g! g)=kg and nQ̂f ! d � 2
kf

(! 0
f 
 f ! f )=kf . Thus,

Ŵf ! p 0 and ŴgŴf ! p 0.
Case 5-2). Ifs > 1=2, thennQ̂g ! d � 2

kg
=kg



Case 4). Suppose thatG is correct, but H is the locally misspeci…ed with� h = � h
0 + � hn�s . By

Theorem 9.1 of in Newey and McFadden (1994), stillf �̂ g; �̂ gg ! p f� 0; � 0g, f �̂ h; ̂ hg ! p f� 0;  0g
and f �̂ f ; �̂ f ; ̂ f g ! p f� 0; � 0;  0g. By Lemma 2, if s � 1=2, thenŴf ! p 0 and ŴgŴf ! p 0, and
the consistency of�̂ in (1) follows from consistency of�̂ f . If s < 1=2, the probability limits of Ŵf

and ŴgŴf depend on the relationship between� and s. If s < 1=2and � < 2s, the limits are the



By Assumption A12 and A13,
p

nfr �
bh(� h) � r � h0(� h)g and

p
n(
̂ h � 
 h) are bounded in

probability. Given 
̂ �
h ! p 
 �

h, the last two terms in b� h converge to zero because! hn�s �! 0 as
n �! 1 for s > 0. Therefore,

p
n(�̂ h � � h) = bA �1

h r �
bh(�̂ h)
̂ �

h

p
nf bh(� h) � ! hn�s g + op(1):

By Assumption A7, A9, A10, A11, and the consistency of�̂ h for � 0,
p

nf bh(� h) � ! hn�s g ! d N (0; � h)
where � h = V ar [H (Z; � h;  h)], r �

bh(�
h
) ! p r � h0(� h

0 ), r �
bh(�̂ h) ! p r � h0(� h

0 ), and Ĥ h ! p H h

which is non-singular by Assumption A8. Thus, by the continuous mapping theorem, we get
p

n(�̂ h � � h) ! d N (0; eV h);

where eV h is the same asymptotic variance as in Case 3) of Theorem 2 as if modelH were correct.
Analogously, the same argument holds for

p
n(�̂ f � � f ), so that we have

p
n(�̂ f � � f ) ! d N (0; eV f ).

Hence, all of
p

n(�̂ g � � 0),
p

n(�̂ h � � h) and
p

n(�̂ f � � f ) in the …rst line of (19) are asymptotically
normal with mean zero and variance being that of the corresponding GMM estimator under correct
speci…cation.

Recall (19):

p
n(�̂ � � 0) = Ŵf Ŵg

p
n(�̂ h � � h) + Ŵf

�
1 � Ŵg

� p
n(�̂ g � � 0) + (1 � Ŵf )

p
n(�̂ f � � f )

+ Ŵf Ŵg� hn1=2�s + (1 � Ŵf )� f n1=2�s :

Recalling (14) and its “squared version”, we have

nQ̂h = Op(n2(1=2�s) ) and nQ̂f = Op(n2(1=2�s) ) =) n� Q̂f = n� �1 nQ̂f = Op(n � �1+2(1=2�s) ) = Op(n � �2s ):

Consequently, for the last two terms in (19), we get

Ŵf Ŵg� hn1=2�s + (1 � Ŵf )� f n1=2�s =
�

1 �
1

n� Q̂f + 1

�  
nQ̂g � � hn1=2�s

nQ̂g + nQ̂h

!

+
�

1

n� Q̂f + 1

�
� f n1=2�s

=
�

1 �
1

Op(n � �2s ) + 1

� �
Op(1)O(n1=2�s )

Op(1) + Op(n2(1=2�s) )

�
+

�
1

Op(n � �2s ) + 1

�
O(n



Case 4-2). If s > 1=2, Ŵf ! p 0 and (1 � Ŵf )� f n1=2�s ! p



Under Assumption A7 and A9, the following …rst-order conditions hold:

FD f
� =

@eQf (�̂ f )
@�

= r �
bf (�̂ f )
̂ f

bf (�̂ f ) = 0 ; FD f
� =

@eQf (�̂ f )
@�

= r �
bf (�̂ f )
̂ f

bf (�̂ f ) = 0 ;

FD f
 =

@eQf (�̂ f )
@

= r 
bf (�̂ f )
̂ f

bf (�̂ f ) = 0 :

Expend bf around the unique minimizer � f � f� f ; � f ;  f g to get

bf (�̂ f ) = bf (� f ) + r � 0 bf (�
f
)( �̂ f � � f ) + r � 0 bf (�

f
)( �̂ � � f ) + r  0 bf (�

f
)( ̂ �  f );

where �
f

is the mean value to apply the mean value theorem. Substitute these into eachFD f to
get

FD f
� = r �

bf (�̂ f )
̂ f f bf (� f ) + r � 0 bf (�
f
)( �̂ f � � f ) + r � 0 bf (�

f
)( �̂ f � � f ) + r  0 bf (�

f
)( ̂ �  f )g;

FD f
� = r �

bf (�̂ f )
̂ f f bf (� f ) + r � 0 bf (�
f
)( �̂ f � � f ) + r � 0 bf (�

f
)( �̂ f � � f ) + r  0 bf (�

f
)( ̂ �  f )g:

FD f
 = r 

bf (�̂ f )
̂ f f bf (� f ) + r � 0 bf (�
f
)( �̂ f � � f ) + r � 0 bf (�

f
)( �̂ f � � f ) + r  0 bf (�

f
)( ̂ �  f )g;

FD f = fFD f
� ; FD f

� ; FD f
 g = bI f + bH f (�̂ f � � f ), and from these,

p
n(�̂ f � � f ) = bH f �1 p

nbI f ;

bI f �

2

6
4

r �
bf (�̂ f )
̂ f

bf (� f )
r �

bf (�̂ f )
̂ f
bf (� f )

r 
bf (�̂ f )
̂ f

bf (� f )

3

7
5 ; bH f �

2

6
4

r �
bf (�̂ f )
̂ f r � 0 bf (�

f
) r �

bf (�̂ f )
̂ f r � 0 bf (�
f
) r �

bf (�̂ f )
̂ f r  0 bf (�
f
)

r �
bf (�̂ f )
̂ f r � 0 bf (�

f
) r �

bf (�̂ f )
̂ f r � 0 bf (�
f
) r �

bf (�̂ f )
̂ f r  0 bf (�
f
)

r 
bf (�̂ f )
̂ f r � 0 bf (�

f
) r 

bf (�̂ f )
̂ f r � 0 bf (�
f
) r 

bf (�̂ f )
̂ f r  0 bf (�
f
)

3

7
5 :

In this expression for
p

n(�̂ f � � f ), examine the part for
p

n(�̂ f � � f ), i.e., the …rstk�
� � 1 components:

p
n(�̂ f � � f ) = bA �1

f r �
bf (�̂ f )
̂ �

f

p
n bf (� f ); where bA f � r �

bf (�̂ f )
̂ �
f r � 0 bf (�

f
); 
̂ �

f � 
̂ 1=2
f �̂ f 
̂ 1=2

f ;

(22)

�̂ f � I ekf
� 
̂ 1=2

f r �
bf (�

f
)fr �

bf (�̂ f )
̂ f r � 0 bf (�
f
)g�1 r �

bf (�̂ f )
̂ 1=2
f

� 
̂ 1=2
f r 

bf (�
f
)fr 

bf (�̂ f )
̂ f r  0 bf (�
f
)g�1 r 

bf (�̂ f )
̂ 1=2
f :

Then, we have

p
n(�̂ f � � f ) =

1
p

n

X

i

b� f
i ; b� f

i � bA �1
f r �

bf (�̂ f )
̂ �
f F (Z i ; � f ); (23)

and b� f
i



Expend bg around the unique minimizer � g � f� g; � gg to get

bg(�̂ g) = bg(� g) + fr � 0bg(�
g
)g(�̂ g � � g) + fr � 0bg(�

g
)g(�̂ � � g)

where �
g

is the value for the mean value theorem. Substitute these into eachFD g to get

FD g
� = r � bg(�̂ g)
̂ g[bg(� g) + r � 0bg(�

g
)( �̂ g � � g) + r � 0bg(�

g
)( �̂ g � � g)];

FD g
� = r � bg(�̂ g)
̂ g[bg(� g) + r � 0bg(�

g
)( �̂ g � � g) + r � 0bg(�

g
)( �̂ g � � g)];

FD g = fFD (



an outcome,T is a binary treatment indicator, and X is a J vector of other covariates (including



Observe that if eH (X;  ) = E(T jX ), then the …rst two terms in the above expectation equal
equation (27) and the second two terms have mean zero. By rearranging terms, equation (30) can
be rewritten as

� = E

"

eG (1; X; � ) � eG (0; X; � ) +
T

eH (X;  )
fY � eG (1; X; � )g �

1 � T

1 � eH (X;  )
fY � eG (0; X; � )g

#

.

(31)
Rewriting the equation this way, it can be seen that if eG (T; X; � ) = E(Y jT; X ), then the

…rst two terms in equation (31) equal equation (26), and the second two terms have mean zero.
This shows that equation (30) or equivalently (31) is doubly robust, in that it equals the average
treatment e¤ect � if either eG (T; X; � ) or eH (X;  ) is correctly speci…ed. The GMM estimator
associated with this doubly robust estimator estimates� , � , and  , using the moments

E

2

6
4

fY � eG (T; X; � )gr1 (T; X )
fT � eH (X;  )gr2 (X )

� �
n

Y T
e

(

(



Okui, Small, Tan, and Robins (2012) propose a DR estimator for an instrumental variables (IV)
additive regression model. The model is the additive regression

Y = M (W; � ) + eG(X ) + U; (35)

E(Q j X ) = eH (X );

E (U j X; Q) = 0 ; (36)

where Y is an observed outcome variable,W is a S vector of observed exogenous covariates,X
is a J vector of observed confounders, andQ is a K � S vector of observed instruments. Note
that this model has features that are unusual for instrumental variables estimation, in particular,
the assumption that E (U j X; Q) = 0 is stronger than the usual E (U j Q) = 0 assumption. The
function M (W; � ) is assumed to be correctly parameterized, and the goal is estimation of�:

Okui, Small, Tan, and Robins (2012) construct a DR estimator assuming that, in addition to
the above, either eG(X ) = eG(X; � ) is correctly parameterized, or that eH (X ) = eH (X;  ) is correctly
parameterized. Let Z = fY; W; X; Qg, and let r1(X ) and r2(X ) be vectors of functions chosen by
the user. De…neG(�; �; Z ) and H (�; ; Z ) by

G(Z; �; � ) =

"
fY � M (W; � ) � eG(X; � )gr1(X )

fY � M (W; � ) � eG(X; � )gQ

#

(37)

and

H (Z; �;  ) =

"
fQ � eH (X;  )gr2(X )

fY � M (W; � )gfQ � eH (X;  )g

#

. (38)

Okui, Small, Tan, and Robins (2012) taker1(X ) = @eG(X; � )=@�and r2(X ) = @eH (X;  )=@. If
eG(X; � ) is correctly speci…ed, thenEfG(Z; �; � )g = 0, while if eH=@�



Table 6-1. Model G is Correctly Speci…ed and ModelH is Misspeci…ed (n = 500)
� 1 Bias Mde RMSE MAE SD Skew Kurt Freq SE SDSE

s=0.25
GMM g 0.0002 0.0006 0.0001 0.0075 0.0111 0.2310 3.1966 0.9465 0.0108 0.0011
GMM h 0.2374 0.2367 0.0566 0.2367 0.0157 0.1558 3.1392 0.0000 0.0139 0.0016
GMM f 0.1094 0.1094 0.0121 0.1094 0.0112 0.0817 3.0557 0.0000 0.0068 0.0005
ODR � 1



Table 7-1. Model G is Misspeci…ed withs = 0:75 and Model H is Misspeci…ed (n = 500)
� 1 Bias Mde RMSE MAE SD Skew Kurt Freq SE


